"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2 The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access / Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

FEATURES'ANALYSIS OF SMALL AND VERY SMALL SCALE WINGS EXPERIMENTED BYAERODYNAMICS TUNNELAND CONFRUNTED WITH THE TWO SCALES SIMILARITY THEORY

Beazit ALI¹ Anastase PRUIU² Adriana SPORIS³ Gheorghe ICHIMOAEI⁴ Levent ALI⁵

¹Professor Ph.D.Eng.,Marine Engineering and Naval Weapons Department, "Mircea cel Batan" Naval Academy, Constanța, Romania

²Professor Ph.D.Eng., Marine Engineering and Naval Weapons Department, "Mircea cel Batran" Naval Academy, Constanța, Romania

³ Senior Lecturer Ph.D.Eng., Marine Engineering and Naval Weapons Department, "Mircea cel Batran" Naval Academy, Constanţa, Romania

⁴Lecturer PhD., "Mircea cel Batran" Naval Academy

⁵Ph.D.attendee Eng., Bureau Veritas Romania Controle International, Romania

Abstract: It compares the NACA 6412 profile and the NACA 0015 profile specific features experimentally with using the two scales similarity theory. The results confirm the fact the two scales similarity theory represents a simple and method establish the hydrodynamic special features of profiles.

Keywords: similarity theory, span, model wing, distort ratio, elongation, aerodynamics coefficient

Introduction

For raising the features of small and very smallscale wings, experimental tests have been conducted on the NACA 0015 and NACA 6412 profile in the aerodynamics tunnel.

Experimental tests have been carried out at consistent flow within the measurement section 1600 x 1200mm of the naval aerodynamics tunnel for a range of angles of attack α comprised between 0⁰ and 32⁰ for NACA 0015 and between - 10⁰ and 15⁰ for NACA 6412 (elongation $\lambda \leq 6$).

Determining the aerodynamic torque, overall qualitative type forces and moments have been achieved by using a strain gauge balance with six components of Kempf Remmers type. Experimental data storage for each angle has been made on the computer. By means of a software package such data has been processed thus obtaining the variation curves of the aerodynamic coefficients c_y and c_x . The results are shown in tables 2 and 3 for NACA 0015 profile and in tables 7 and 8 for NACA 6412 profile.

DOI: 10.21279/1454-864X-16-I2-021

Analysis by comparison of NACA 0015 profile andNACA 6412 profile features, experimentally obtained by aerodynamics tunnel with their features achieved through the two sales similarity theory

$$R_{y} = F_{N} \cos \alpha - F_{T} \sin \alpha \text{ -carrying capacity(1)}$$
$$R_{N} = F_{N} \sin \alpha - F_{T} \cos \alpha \text{ - resistance to progress}$$
(2)

$$c_{y} = \frac{R_{y}}{\frac{\rho v^{2}}{2} \cdot S} - \text{bearing capacity coefficient}$$
(3) $c_{x} = \frac{R_{x}}{\frac{\rho v^{2}}{2} \cdot S} - \text{resistance to}$

progresscoefficient(4) $S = c \cdot l$ -wing surface (5)

The geometric parameters of NACA 0015 profile are provided in Table 1.

© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2 The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access / Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

	Table 1					
% с	Thickness of					
	sect % I					
0	0					
5	8,8					
10	11,7					
20	14,3					
30	15					
40	14,5					
50	13,2					
60	11,4					
70	9,1					
80	6,5					
90	3,62					
100	0					

and aerodynamic parameters experimented by aerodynamics tunnel are provided in tables (2) and (3).

 $c_v = f(\alpha, \lambda)$ Table 2

$\lambda \alpha^0$	0,25	0,50	0,75	1,0	1,5	2,0	3,0	5,0
0	0	0	0	0	0	0	0	0
4	0,04	0,07	0,09	0,10	0,14	0,16	0,22	0,25
8	0,1	0,15	0,19	0,23	0,29	0,35	0,45	0,50
12	0,15	0,26	0,31	0,36	0,44	0,54	0,69	0,75
16	0,22	0,36	0,43	0,50	0,61	0,73	0,88	0,95
20	0,32	0,48	0,56	0,64	0,80	0,90	0,89	0,70
24	0,41	0,60	0,72	0,80	0,93	0,53	0,56	0,72
28	0,51	0,75	0,86	0,94	0,47	0,49	0,56	0,73
30	0,60	0,88	1,00	1,05	0,49	0,50	0,56	0,74

$c_x = f(\alpha, \lambda)$ Tal	ble 3	3
--------------------------------	-------	---

$\lambda \atop{\alpha^0}$	0,25	0,50	0,75	1,0	1,5	2,0	3,0	5,0
0	0,03	0,01	0,02	0,01	0,02	0,01	0,01	0,01
4	0,05	0,02	0,02	0,02	0,02	0,02	0,01	0,01
8	0,05	0,03	0,03	0,03	0,04	0,03	0,04	0,03
12	0,07	0,05	0,06	0,06	0,06	0,06	0,07	0,07
16	0,10	0,09	0,10	0,10	0,11	0,11	0,11	0,19
20	0,12	0,14	0,14	0,15	0,16	0,16	0,27	0,25
24	0,19	0,21	0,23	0,22	0,23	0,22	0,31	0,28
28	0,26	0,30	0,30	0,30	0,28	0,35	0,36	0,37
30	0,34	0,37	0,42	0,38	0,47	0,40	0,39	0,40

The variation of the c_y aerodynamic coefficient depending on the angle of incidence α of NACA-0015 profile is appropriate for the elongations that it has been experienced.

Applying the two scales similarity theory of NACA-0015 profile with λ =5 obtained for elongations λ = 0,25; 0,50; 0,75; 1,0; 1,5; 2,0; and 3,0 the following

-							
$\begin{array}{c}\lambda\\ \alpha^0\end{array}$	2	3	6	$\frac{\lambda}{\alpha^0}$	2	3	6
-	-0,35	-0,38	-0,34	-	0,13	-0,15	0,17
10				10			
-8	-0,25	-0,34	-0,33	-8	0,10	0,12	0,14
-6	-0,01	-0,22	-0,31	-6	0,08	0,09	0,12
-4	-0,05	-0,01	-0,20	-4	0,08	0,08	0,09
-2	0,26	0,21	-0,06	-2	0,06	0,07	0,08
0	0,45	0,52	0,40	0	0,07	0,08	0,09
3	0,76	0,92	1,10	3	0,12	0,13	0,12
6	1,01	1,23	1,55	6	0,17	0,20	0,17
9	1,26	1,50	1,90	9	0,25	0,29	0,28
12	1,51	1,78	2,14	12	0,36	0,39	0,36
15	1,74	1,96	1,61	15	0,49	0,53	0,44

values of the bearing capacity c_y coefficient and the

resistance to progress c_x the coefficient are shown in Tables 4 and 5.

 $c_v = f(\alpha, \lambda)$ Table 4

λ								
α^0	0,25	0,50	0,75	1,0	1,5	2,0	3,0	5,0
0	0	0	0	0	0	0	0	0
4	0,01	0,02	0,04	0,05	0,07	0,10	0,15	0,25
8	0,02	0,05	0,07	0,10	0,15	0,20	0,30	0,50
12	0,04	0,07	0,11	0,15	0,22	0,30	0,45	0,75
16	0,05	0,09	0,14	0,19	0,28	0,38	0,57	0,95
20	0,03	0,07	0,11	0,14	0,21	0,28	0,42	0,70
24	0,04	0,07	0,11	0,14	0,22	0,29	0,43	0,72
28	0,04	0,07	0,11	0,15	0,22	0,29	0,44	0,73
30	0,05	0,07	0,11	0,15	0,22	0,30	0,44	0,74

 $c_x = f(\alpha, \lambda)$ Table 5

$\lambda \alpha^0$	0,25	0,50	0,75	1,0	1,5	2,0	3,0	5,0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
4	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01
8	0,00	0,00	0,00	0,00	0,01	0,01	0,02	0,03
12	0,00	0,01	0,01	0,01	0,02	0,03	0,04	0,07
16	0,01	0,02	0,03	0,04	0,06	0,08	0,12	0,19
20	0,01	0,03	0,04	0,05	0,07	0,10	0,15	0,25
24	0,01	0,03	0,04	0,06	0,08	0,11	0,17	0,28
28	0,02	0,04	0,06	0,07	0,11	0,15	0,22	0,37
30	0,02	0,04	0,06	0,08	0,12	0,16	0,24	0,40

For NACA 6412 profile, the geometric parameters are provided in Table 6.

DOI: 10.21279/1454-864X-16-I2-021

© 2015. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XIX – 2016 – Issue 2 The journal is indexed in: PROQUEST / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI / JOURNAL INDEX / I2OR / SCIENCE LIBRARY INDEX / Google Scholar / Academic Keys/ ROAD Open Access / Academic Resources / Scientific Indexing Services / SCIPIO / JIFACTOR

Table 6

% с	extrados	intrados
	% с	% с
0,0	0,0	0,0
5,0	5,36	-1,99
10	7,58	-1,99
20	10,3	-1,25
30	11,6	-0,38
40	11,8	0,2
50	11,1	0,55
60	9,9	0,8
70	8,2	0,8
80	6,0	0,7
90	3,3	0,39
100	0.0	0.0

and the aerodynamic parameters experimented by aerodynamics tunnel on Re = 85.000, are provided in

Table 7.

$$c_{y} = f(\lambda, \alpha, \text{Re}); c_{x} = f(\lambda, \alpha, \text{Re})$$
 Table 7

The polarities of NACA 6412 profile corresponding to the elongation $\lambda = 2$, 3 and 6 and number Re = 85.000 are shown in figure 3, below.

CONCLUSIONS

By comparing the values obtained for the two profiles with those experimentally obtained by wind tunnel, a dispersion of the experimental values is observed related to the values of those calculated by the two scales similarity method since the experiments were conducted at Reynolds numbers that differ from those obtained by applying the theory of similarity between the two scales or otherwise similarity values obtained by applying the two scales similarity method being valid for another Reynolds number which differs from that of the model. This aspect related to the Reynolds number on the model and on the prototype model, it results even from the law of this phenomenon.

BIBLIOGRAPHY

[1]."Aerodynamic tunnel tests for determining the aerodynamic features of profiles", Contract no. 621, Galaţi 2007.

[2].NIESTOJ, W, Profiles for aeromodels, Warsaw, 1974.

[3]. Vasilescu, AL. A., Analiză dimensională și teoria similitudinii, Editura Academiei, București, 1969.

[4]. Vasilescu, AL. A., Similitudinea sistemelor elastice, Editura Academiei, București, 1969.

[5].Carafoli, E, Constantinescu, V. N., Dinamica fluidelor incompresibile, Editura Academiei, București, 1981.

[6].Beazit Ali, Stabilirea punții de legătură între teoria aripii de mică anvergură și teoria aripii de mare anvergură pe fondul teoriei similitudinii la două scări, Referatde doctorat, Universitatea "Dunărea de Jos" Galati, 1995.

[7].Beazit Ali, *Obținerea polarelor aripilor de mică anvergură plecând de la polarele aripilor de mare anvergură,* folosind teoria similitudinii la două scări, Buletinul, Tehmar", Constanța, 1996.

[8]. Beazit Ali, Traian Florea, *Study on the upward small span profile based on the two scale similarity theory*, The XII-th National Conference on Thermotechnics with International Participation, Naval Academy "Mircea cel Bătrân", Constanta, 2002.

$\lambda \atop{\alpha^0}$	2	3	6	$\lambda lpha^0$	2	3	6
-0	-0,11	-0,17	-0,34	-	0,06	0,08	0,17
				10			
-8	-0,11	-0,17	-0,33	-8	0,04	0,07	0,14
-6	-0,10	-0,16	-0,31	-6	0,04	0,06	0,12
-4	-0,07	-0,10	-0,20	-4	0,03	0,05	0,09
-2	-0,02	-0,03	-0,06	-2	0,06	0,04	0,08
0	0,13	0,2	0,39	0	0,03	0,04	0,09
3	0,36	0,55	1,10	3	0,04	0,06	0,12
6	0,51	0,78	1,54	6	0,06	0,08	0,17
9	0,63	0,95	1,90	9	0,09	0,14	0,28
12	0,71	1,07	2,14	12	0,12	0,18	0,36
15	0,54	0,80	1,61	15	0,15	0,22	0,44

Applying the two scales similarity method to NAC 6412 profile too with $\lambda = 6$, we obtain for elongations $\lambda = 2$ and $\lambda = 3$ the following values of the bearing capacity c_y coefficient and the one of the resistance to progress c_x coefficient in table 8,

valid for a number Re. Re =
$$85000 \cdot \frac{K_c^2}{\sqrt{K_l}}$$

$$c_y = f(\lambda, \alpha, \text{Re})$$
; $c_x = f(\lambda, \alpha, \text{Re})$ Table 8

149