

Volume XXVII 2024

ISSUE no.2

MBNA Publishing House Constanta 2024

doi: 10.21279/1454-864X-24-I2-017
SBNA© 2024. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Making Naval Operations Safer and More Secure

Using AI Algorithms
To cite this article: V. Dobref, P. Burlacu, E.G. Robe-Voinea, A. F. Ionescu and V. Mocanu, Scientific

Bulletin of Naval Academy, Vol. XXVII 2024, pg. 148-156.

Submitted: 23.04.2024

Revised: 01.10.2024

Accepted: 16.10.2024

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Making Naval Operations Safer and More Secure Using AI

Algorithms

V. Dobref1, P. Burlacu2, E.G. Robe-Voinea3, A. F. Ionescu4,

V. Mocanu5

1Professor PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO
2Assoc. Prof. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO
3 Senior Lect. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO
4 Senior Lect., PhD, Ovidius University of Constanța, Constanța, RO
5 Senior Lect. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO

E-mail: elena.robe@anmb.ro

Abstract. Nowadays, AI concepts have become almost indispensable for scientific research,

with an exponential growth in their capabilities in various fields. The recent challenges

generated by the conflict in the Black Sea Basin have required finding solutions for the search

and identification of drifting sea mines, which represent a potential danger to maritime vessels

and offshore engineering infrastructure. Consequently, this work reports on the development,

up to an intermediate stage, of an autonomous system based on aerial drones (UAV) and

surface drones (USV) using AI algorithms totally oriented towards increasing military

capabilities.

 Keywords: artificial intelligence, machine learning, data augmentation, YOLO algorithm,

object detection, prediction, autonomous system.

1. Introduction

The recent challenges generated by the conflict in the Black Sea Basin require finding solutions for the

search and identification of drifting sea mines. In this paper, we present an overview of the

development, up to an intermediate stage, of an autonomous system based on aerial drones (unmanned

aerial vehicles - UAV) and surface drones (unmanned surface vehicles - USV) that uses the YOLO

object detection algorithm to detect mines.

The remainder of the paper is structured as follows. Section 2 frames object detection as a machine

learning problem. Section 3 highlights several common issues that are relevant for machine learning in

general and object detection in particular. In Section 4, we offer a brief description of YOLO as an

object detection approach. In Section 5 we describe one of our in-house projects, also suggesting how

part of the previously presented notions could be implemented.

mailto:elena.robe@anmb.ro

2. Object detection in the machine learning context

We will start by framing the object detection techniques used in the broader context of machine

learning (ML). There are three major ML paradigms: supervised learning, unsupervised learning, and

reinforcement learning. The main difference between supervised and unsupervised learning consists of

the usage of ground truth values (i.e., labels/annotations assigned by human decision makers to each

instance of the input data): in unsupervised learning, no such labels are provided by humans. This

means that the algorithm should discover patterns in the data on its own. As for the reinforcement

learning paradigm, it is a different, agent-based approach, where human input includes the goal that

the agent should pursue, the environment in which the agent can move, and a reward function for the

interaction of the agent with the environment. Then, the agent explores the environment, attempting to

optimize its cumulative reward.

Note that object detection and classification regularly fall into the supervised (or sometimes into a

semi-supervised) learning category [1], [2], [3], hence the focus of the present paper. As a supervised

learning task, object detection typically requires annotating samples.

A very important part of supervised learning is model training. Training generally aims to optimize

two main objectives:

1. speed (usually measured in terms of time)

2. accuracy (measured using various performance metrics depending on the nature of the problem

and the model used, reflecting various definitions of the distance between model predictions and

actual target values).

Of note, the two main objectives are often conflicting and thus hard to simultaneously optimize,

forcing researchers into accepting trade-off solutions (accuracy at the expense of speed or vice versa).

Training an ML model typically involves the steps illustrated in Figure 1. First, we need to collect

data - as many samples as possible, under diverse conditions. Second, we need to label/annotate the

data, providing the “ground truth” values. Third, we should split this labeled dataset into training data

and the so-called “unseen” data used for validation and testing. Training data is the part of the dataset

for which the model is provided the corresponding labels. “Unseen” data is the part of the dataset for

which labels are not provided to the model. This is the testing data and, optionally, the validation data.

Validation data is unseen data used during training (e.g., to detect overfitting, which will be briefly

covered in a later subsection). Finally, the actual training step can start from random parameter values

or fine-tune parameters of a similar, but more general model which was pretrained (if such a model is

available). The latter approach is called transfer learning.

Figure 1. A typical training flow

3. Training issues and solutions

Common training issues include two opposite problems, which are underfitting (poor performance

on training data) and overfitting (high performance on training data, but poor performance on unseen

data) [4]. Roughly speaking, these are caused by a mismatch between dataset size (i.e., number of

training samples) and model complexity (i.e., number of parameters to be learned).

Typical causes and solutions for the two issues are summarized in Table 1.

Table 1. Underfitting versus Overfitting in ML Model Training

 Underfitting Overfitting

Causes • Large dataset

• Simple model

• Small dataset

• Complex model

Solutions • Increase duration of training

• Increase model complexity

• Data augmentation

• Early stopping, dropout, and other

regularization techniques,

normalization techniques

While underfitting can be easy to detect by only looking at the model’s performance on the training

data (if the accuracy is low, we need to train more or to increase model complexity), overfitting is

more difficult to detect because we also need validation data during training. Overfitting may occur

because the dataset is too small for the complexity of the model. We can modify the duration of

training or restrict the parameters of the model.

A common workaround for overfitting is data augmentation, which involves creating synthetic

training instances based on the existing training instances. Such an approach may often prove useful in

the military context, where scarcity of data seems to be a common problem. Thus, we have a high risk

of overfitting because of small datasets, or datasets that fail to capture certain aspects which may occur

naturally in input data (e.g., no images of sea mines under rain conditions, which may occur in

practice). Effects imitating such conditions may sometimes be synthetically generated. Finally, the

augmented data is added to the existing dataset in order to increase its size.

For images, popular data augmentation operations include affine transforms, filtering transforms,

and “functional” transforms. There are multiple Python libraries that provide convenient functions for

image augmentation. One of the most recently developed is the Albumentations library [5], an open-

source library implemented as a wrapper for multiple existing augmentation libraries, providing a

simplified interface to them. The augmentations presented in Figures 2-4 were generated using the

Albumentations library.

Affine geometric transforms include flipping, rotations, scaling, shearing, and translations. Figure 2

illustrates several such transforms applied to an image containing a sea mine. Of note, we can

compose transforms, as you can see in the lower right image, in which three geometric transforms

were successively applied to the original image.

Figure 2. Affine transforms

Filtering transforms are of two main types: high pass (sharpening) filters and low pass (smoothing)

filters. High pass filters, such as Contrast Limited Adaptive Histogram Equalization (CLAHE),

sharpen edges and thus enhance contrast. On the other hand, low-pass filters can be used either for

denoising or for simulating certain mechanical or optical effects. For example, they may simulate the

way images appear blurred because of being taken through a glass, or because the camera went out of

focus, or it moved while taking the picture. A selection of filtering transforms applied to an image of a

sea mine is shown in Figure 3.

Figure 3. Filtering transforms

As for the “functional” transforms, they can simulate weather conditions (fog, with haze circles,

rain, sun flare, shadows, snow, etc.), or photographical effects (haze circles under foggy conditions,

camera sensor noise, solarization because of overexposure to light, etc.). Figure 4 illustrates several

such effects.

Figure 4. Functional transforms

It should be noted that, depending on the application and the technology used for data collection

and processing, some augmentations may be useful, while others may be detrimental to the training

process. The key to selecting suitable augmentations is similarity with real data that may constitute

input to the model.

4. Object detection. The YOLO algorithm

Object detection is a computer vision task which consists of locating objects of given classes in

images. A brief review of detection methods identifies two major approaches to object detection [2],

[3]:

• Two stage approaches, which use one model for region proposal, and a second model for

classifying the objects in the regions where they were detected. Examples are R-CNN, Fast R-

CNN, Faster R-CNN, etc.

• One-stage approaches, which use a single model for both these tasks (region proposal and

object classification). A popular example is YOLO (You Only Look Once). While the primary

advantage of one-stage detectors over two-stage detectors is speed, YOLO has also been

proven to outperform many competing approaches in terms of accuracy [6] [7].

For each object it detects in an input image, YOLO outputs the coordinates of the bounding box

corresponding to the region of the detected object and the detection confidence scores for the classes

of objects the model was trained to detect. An example is shown in Figure 5, where two objects were

detected, with confidence scores of 82% and 87% for the class labels “ship” and “mine”, respectively.

Figure 5. Object detection with YOLO

A typical example of a complete object detection pipeline with YOLO is presented in Figure 6. The

first step is dataset creation, with augmentation if necessary. The next step is annotation (manual or

other annotation/labelling tools). The next step is splitting the annotated dataset into the training,

validation and testing parts. Next, the dataset should be exported to a format interpretable by YOLO.

(for each image, there should be a text file containing the detected object classes and the normalized

coordinates of the corresponding bounding boxes that surround the detected objects). Next, a

configuration file in the YAML format should be edited. If a pretrained model is available, training

may start from the parameters of that model, fine-tuning them. If not, it will start from random

parameters. The final step is testing the trained model on input data from various sources (saved image

or video files or collections of such files, camera input, etc.).

Figure 6. Example computer vision pipeline with YOLO

5. Case study: AI Applied in the ASMINES Project

5.1 ASMINES project main stages

 The ASMINES project stand in the development and integration of autonomous means such as

(UAV and USV) in the concept of integrated action of specialized forces in the search and

identification of sea mines.

The project that extends over a period of 3 years and has a series of main objectives that we will

expose in the following.

The main objectives for the year 2023 were to develop the ASMINES concept and structure

(SWOT analysis: fixed wing UAV vs multirotor UAV), purchase 3 UAV (2+1), the USV acquisition

and conversion but not last the development of the seamines prediction trajectory and detection

algorithm.

The first year project was ended with real-world testing of the USV component of the ASMINES

system.

For the next two years (2024-2025) the research team has planned activities such as retesting in the

real environment of the entire ASMINES system (UAV +USV) followed by testing the integrated

UAV+USV action but this time launched from a command ship.

After that the final stage will consist of the approval of the prototype and the transfer of the system

to the Romanian Naval Forces and the dissemination of project results

5.2 AI in the ASMINES project context

AI integration offers several significant benefits. It enhances accuracy by improving the precision

of mine detection and minimizing false positives and negatives. It also boosts efficiency by speeding

up the detection process, allowing for broader area coverage within shorter time frames. Additionally,

AI enhances safety by reducing the need for human divers in initial mine detection, thereby increasing

operational safety.

Looking ahead, the future directions involve ongoing development to improve AI algorithms for

better accuracy and adaptability to various environments. There will also be efforts to integrate more

advanced sensors and data fusion techniques to further enhance detection capabilities.

In terms of detection, the YOLO algorithm can identify sea mines based on a trained model. Upon

successful detection (Fig. 7), the application records the coordinates of the aerial drone’s position at

the time of finding the sea mine in the database.

Fig. 7 - the logical flow of the algorithm in the ASMINES project context

6. Conlusions

The article presents, in an original conception, the possibility of using AI technologies in the process

of identifying and classifying drifting sea mines. The fundamental theoretical aspects that were the

basis of the design of the software application dedicated to this project were validated by the tests

carried out in the operational environment, based on the information acquired from the sensors placed

on the USV surface drone. We note the precision and speed with which the sea mine is identified, with

the observation that detection performance is strictly dependent on the training of the identification

algorithm and the number of images (real or augmented) of the intended target.

The practical results obtained will be capitalized by the realization of the ASMINES experimental

system, which will be completed in 2025.

7. References

[1] Y. Wang, Z. Liu and S. Lian, “Semi-supervised Object Detection: A Survey on Recent Research

and Progress.,” arXiv preprint arXiv:2306.14106, 2023.

[2] Z. Q. Zhao, P. Zheng, S. T. Xu and X. Wu, “Object detection with deep learning: A review,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212-3232,

2019.

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, “Object detection in 20 years: A survey,” Proceedings

of the IEEE, vol. 111, no. 3, pp. 257-276, 2023.

[4] S. Rajvanshi, G. Kaur, A. Dhatwalia, S. A. Arunima and A. Bhasin, “Research on Problems and

Solutions of Overfitting in Machine Learning,” in International Conference on Artificial-Business

Analytics, Quantum and Machine Learning, Singapore, 2023.

[5] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin and A. A. Kalinin,

“Albumentations: fast and flexible image augmentations,” Information, vol. 11, no. 2, pp. 125-

128, 2020.

[6] J. Terven and D. Cordova-Esparza, “A comprehensive review of YOLO: From YOLOv1 to

YOLOv8 and beyond,” arXiv preprint arXiv:2304.00501, 2023.

[7] C. Y. Wang, I. H. Yeh and H. Y. M. Liao, “YOLOv9: Learning What You Want to Learn Using

Programmable Gradient Information,” arXiv preprint arXiv:2402.13616, 2024.

[8] M. DA, “The mine warfare cycle: History, Indications, and Future,” September 2015. [Online].

Available: http://www.globalsecurity.org/military/library/report/1997/Morris.

[9] J. Rios, “Naval mines in the 21st century can NATO navies meet the challenge?,” 2005.

[10] “US Navy Maritime Mammal Program,” [Online]. Available: http://www.public.navy.mil/

spawar/Pacific/71500/Pages/default.aspx. [Accessed September 2015].

[11] N. D. Marian, “Studii privind evaluarea resurselor de energie regenerabilă în zona litoralului

românesc al Mării Negre,” [Online]. Available: http://arthra.ugal.ro/handle/123456789/7019.

[12] P. Bosscher and S. Lightsey, Unmanned surface vehicles for sea mine detection.

[13] S. A. Bendersky, YOLO-based detection of sea mines in underwater video, 2020.

[14] H. S. Kim, Real-time detection and tracking of underwater mines using unmanned aerial vehicles.

[15] D. Munteanu, D. Moina, C. G. Zamfir, Ș. M. Petrea, D. S. Cristea and N. Munteanu, “Sea Mine

Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models,” [Online].

Available: https://www.mdpi.com/1424-8220/22/23/9536.

	87.pdf (p.1)
	87.pdf (p.2-10)

