
 

Volume XXVII 2024 

ISSUE no.2          

MBNA Publishing House Constanta 2024 

  
  
 

doi: 10.21279/1454-864X-24-I2-017 
SBNA© 2024. This work is licensed under the CC BY-NC-SA 4.0 License 

 

 

SBNA PAPER • OPEN ACCESS 

 

 

Making Naval Operations Safer and More Secure 

Using AI Algorithms 
To cite this article: V. Dobref, P. Burlacu, E.G. Robe-Voinea, A. F. Ionescu and V. Mocanu, Scientific 

Bulletin of Naval Academy, Vol. XXVII 2024, pg. 148-156.  

 

 

Submitted: 23.04.2024 

Revised: 01.10.2024 

Accepted: 16.10.2024 

 

Available online at www.anmb.ro 

 

ISSN: 2392-8956; ISSN-L: 1454-864X 

http://www.anmb.ro/


Making Naval Operations Safer and More Secure Using AI 

Algorithms  

V. Dobref1, P. Burlacu2, E.G. Robe-Voinea3, A. F. Ionescu4,  

V. Mocanu5 

1Professor PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO 
2Assoc. Prof. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO 
3 Senior Lect. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO 
4 Senior Lect., PhD, Ovidius University of Constanța, Constanța, RO 
5 Senior Lect. PhD eng, Naval Academy “Mircea cel Bătrân”, Constanța, RO 

 

E-mail: elena.robe@anmb.ro 

Abstract. Nowadays, AI concepts have become almost indispensable for scientific research, 

with an exponential growth in their capabilities in various fields. The recent challenges 

generated by the conflict in the Black Sea Basin have required finding solutions for the search 

and identification of drifting sea mines, which represent a potential danger to maritime vessels 

and offshore engineering infrastructure. Consequently, this work reports on the development, 

up to an intermediate stage, of an autonomous system based on aerial drones (UAV) and 

surface drones (USV) using AI algorithms totally oriented towards increasing military 

capabilities. 

 Keywords: artificial intelligence, machine learning, data augmentation, YOLO algorithm, 
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1. Introduction 

 

The recent challenges generated by the conflict in the Black Sea Basin require finding solutions for the 

search and identification of drifting sea mines. In this paper, we present an overview of the 

development, up to an intermediate stage, of an autonomous system based on aerial drones (unmanned 

aerial vehicles - UAV) and surface drones (unmanned surface vehicles - USV) that uses the YOLO 

object detection algorithm to detect mines. 

The remainder of the paper is structured as follows. Section 2 frames object detection as a machine 

learning problem. Section 3 highlights several common issues that are relevant for machine learning in 

general and object detection in particular. In Section 4, we offer a brief description of YOLO as an 

object detection approach.  In Section 5 we describe one of our in-house projects, also suggesting how 

part of the previously presented notions could be implemented. 
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2. Object detection in the machine learning context 

We will start by framing the object detection techniques used in the broader context of machine 

learning (ML). There are three major ML paradigms: supervised learning, unsupervised learning, and 

reinforcement learning. The main difference between supervised and unsupervised learning consists of 

the usage of ground truth values (i.e., labels/annotations assigned by human decision makers to each 

instance of the input data): in unsupervised learning, no such labels are provided by humans. This 

means that the algorithm should discover patterns in the data on its own. As for the reinforcement 

learning paradigm, it is a different, agent-based approach, where human input includes the goal that 

the agent should pursue, the environment in which the agent can move, and a reward function for the 

interaction of the agent with the environment. Then, the agent explores the environment, attempting to 

optimize its cumulative reward. 

Note that object detection and classification regularly fall into the supervised (or sometimes into a 

semi-supervised) learning category [1], [2], [3], hence the focus of the present paper. As a supervised 

learning task, object detection typically requires annotating samples. 

A very important part of supervised learning is model training. Training generally aims to optimize 

two main objectives: 

1.  speed (usually measured in terms of time)  

2.  accuracy (measured using various performance metrics depending on the nature of the problem 

and the model used, reflecting various definitions of the distance between model predictions and 

actual target values).  

Of note, the two main objectives are often conflicting and thus hard to simultaneously optimize, 

forcing researchers into accepting trade-off solutions (accuracy at the expense of speed or vice versa). 

Training an ML model typically involves the steps illustrated in Figure 1. First, we need to collect 

data - as many samples as possible, under diverse conditions. Second, we need to label/annotate the 

data, providing the “ground truth” values. Third, we should split this labeled dataset into training data 

and the so-called “unseen” data used for validation and testing. Training data is the part of the dataset 

for which the model is provided the corresponding labels. “Unseen” data is the part of the dataset for 

which labels are not provided to the model. This is the testing data and, optionally, the validation data. 

Validation data is unseen data used during training (e.g., to detect overfitting, which will be briefly 

covered in a later subsection). Finally, the actual training step can start from random parameter values 

or fine-tune parameters of a similar, but more general model which was pretrained (if such a model is 

available). The latter approach is called transfer learning. 

 
Figure 1. A typical training flow 

 



3.  Training issues and solutions 

Common training issues include two opposite problems, which are underfitting (poor performance 

on training data) and overfitting (high performance on training data, but poor performance on unseen 

data) [4]. Roughly speaking, these are caused by a mismatch between dataset size (i.e., number of 

training samples) and model complexity (i.e., number of parameters to be learned). 

Typical causes and solutions for the two issues are summarized in Table 1. 

 

Table 1. Underfitting versus Overfitting in ML Model Training 

 Underfitting Overfitting 

Causes • Large dataset 

• Simple model 

• Small dataset 

• Complex model 

Solutions • Increase duration of training 

• Increase model complexity 

• Data augmentation 

• Early stopping, dropout, and other 

regularization techniques, 

normalization techniques 

 

While underfitting can be easy to detect by only looking at the model’s performance on the training 

data (if the accuracy is low, we need to train more or to increase model complexity), overfitting is 

more difficult to detect because we also need validation data during training. Overfitting may occur 

because the dataset is too small for the complexity of the model. We can modify the duration of 

training or restrict the parameters of the model.  

A common workaround for overfitting is data augmentation, which involves creating synthetic 

training instances based on the existing training instances. Such an approach may often prove useful in 

the military context, where scarcity of data seems to be a common problem. Thus, we have a high risk 

of overfitting because of small datasets, or datasets that fail to capture certain aspects which may occur 

naturally in input data (e.g., no images of sea mines under rain conditions, which may occur in 

practice). Effects imitating such conditions may sometimes be synthetically generated. Finally, the 

augmented data is added to the existing dataset in order to increase its size. 

For images, popular data augmentation operations include affine transforms, filtering transforms, 

and “functional” transforms. There are multiple Python libraries that provide convenient functions for 

image augmentation. One of the most recently developed is the Albumentations library [5], an open-

source library implemented as a wrapper for multiple existing augmentation libraries, providing a 

simplified interface to them. The augmentations presented in Figures 2-4 were generated using the 

Albumentations library. 

Affine geometric transforms include flipping, rotations, scaling, shearing, and translations. Figure 2 

illustrates several such transforms applied to an image containing a sea mine. Of note, we can 

compose transforms, as you can see in the lower right image, in which three geometric transforms 

were successively applied to the original image. 

 



 
Figure 2. Affine transforms 

 

Filtering transforms are of two main types: high pass (sharpening) filters and low pass (smoothing) 

filters. High pass filters, such as Contrast Limited Adaptive Histogram Equalization (CLAHE), 

sharpen edges and thus enhance contrast. On the other hand, low-pass filters can be used either for 

denoising or for simulating certain mechanical or optical effects. For example, they may simulate the 

way images appear blurred because of being taken through a glass, or because the camera went out of 

focus, or it moved while taking the picture. A selection of filtering transforms applied to an image of a 

sea mine is shown in Figure 3. 

 



 
Figure 3. Filtering transforms 

As for the “functional” transforms, they can simulate weather conditions (fog, with haze circles, 

rain, sun flare, shadows, snow, etc.), or photographical effects (haze circles under foggy conditions, 

camera sensor noise, solarization because of overexposure to light, etc.). Figure 4 illustrates several 

such effects. 

 

 
Figure 4. Functional transforms 

 



It should be noted that, depending on the application and the technology used for data collection 

and processing, some augmentations may be useful, while others may be detrimental to the training 

process. The key to selecting suitable augmentations is similarity with real data that may constitute 

input to the model. 

4.  Object detection. The YOLO algorithm 

 

Object detection is a computer vision task which consists of locating objects of given classes in 

images. A brief review of detection methods identifies two major approaches to object detection [2], 

[3]: 

• Two stage approaches, which use one model for region proposal, and a second model for 

classifying the objects in the regions where they were detected. Examples are R-CNN, Fast R-

CNN, Faster R-CNN, etc. 

• One-stage approaches, which use a single model for both these tasks (region proposal and 

object classification). A popular example is YOLO (You Only Look Once). While the primary 

advantage of one-stage detectors over two-stage detectors is speed, YOLO has also been 

proven to outperform many competing approaches in terms of accuracy [6] [7]. 

For each object it detects in an input image, YOLO outputs the coordinates of the bounding box 

corresponding to the region of the detected object and the detection confidence scores for the classes 

of objects the model was trained to detect. An example is shown in Figure 5, where two objects were 

detected, with confidence scores of 82% and 87% for the class labels “ship” and “mine”, respectively. 

 

 
Figure 5. Object detection with YOLO 

 

A typical example of a complete object detection pipeline with YOLO is presented in Figure 6. The 

first step is dataset creation, with augmentation if necessary. The next step is annotation (manual or 

other annotation/labelling tools). The next step is splitting the annotated dataset into the training, 

validation and testing parts. Next, the dataset should be exported to a format interpretable by YOLO. 

(for each image, there should be a text file containing the detected object classes and the normalized 

coordinates of the corresponding bounding boxes that surround the detected objects). Next, a 

configuration file in the YAML format should be edited. If a pretrained model is available, training 

may start from the parameters of that model, fine-tuning them. If not, it will start from random 

parameters. The final step is testing the trained model on input data from various sources (saved image 

or video files or collections of such files, camera input, etc.). 



 
Figure 6. Example computer vision pipeline with YOLO 

 

 

5.  Case study: AI Applied in the ASMINES Project 

 

5.1 ASMINES project main stages 

 

 The ASMINES project stand in the development and integration of autonomous means such as 

(UAV and USV) in the concept of integrated action of specialized forces in the search and 

identification of sea mines. 

The project that extends over a period of 3 years and has a series of main objectives that we will 

expose in the following. 

The main objectives for the year 2023 were to develop the ASMINES concept and structure  

(SWOT analysis: fixed wing UAV vs multirotor UAV), purchase 3 UAV (2+1), the USV acquisition 

and conversion but not last the development of the seamines prediction trajectory and  detection 

algorithm.  

The first year project was ended with real-world testing of the USV component of the ASMINES 

system. 

For the next two years (2024-2025) the research team has planned activities such as retesting in the 

real environment of the entire ASMINES system (UAV +USV) followed by testing the integrated 

UAV+USV action but this time launched from a command ship.  

After that the final stage will consist of the approval of the prototype and the transfer of the system 

to the Romanian Naval Forces and the dissemination of project results 

 

5.2  AI in the ASMINES project context 

 

AI integration offers several significant benefits. It enhances accuracy by improving the precision 

of mine detection and minimizing false positives and negatives. It also boosts efficiency by speeding 

up the detection process, allowing for broader area coverage within shorter time frames. Additionally, 

AI enhances safety by reducing the need for human divers in initial mine detection, thereby increasing 

operational safety. 

Looking ahead, the future directions involve ongoing development to improve AI algorithms for 

better accuracy and adaptability to various environments. There will also be efforts to integrate more 

advanced sensors and data fusion techniques to further enhance detection capabilities. 



In terms of detection, the YOLO algorithm can identify sea mines based on a trained model. Upon 

successful detection (Fig. 7), the application records the coordinates of the aerial drone’s position at 

the time of finding the sea mine in the database. 

 

 
Fig. 7 - the logical flow of the algorithm in the ASMINES project context 

 

6.  Conlusions 

The article presents, in an original conception, the possibility of using AI technologies in the process 

of identifying and classifying drifting sea mines. The fundamental theoretical aspects that were the 

basis of the design of the software application dedicated to this project were validated by the tests 

carried out in the operational environment, based on the information acquired from the sensors placed 

on the USV surface drone. We note the precision and speed with which the sea mine is identified, with 

the observation that detection performance is strictly dependent on the training of the identification 

algorithm and the number of images (real or augmented) of the intended target. 

The practical results obtained will be capitalized by the realization of the ASMINES experimental 

system, which will be completed in 2025. 
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