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Abstract. The maritime industry is in a continuous state of digital transformation, and with 

strong cooperation from all stakeholders—ship designers, classification societies, equipment 

manufacturers, and shipping companies—fully autonomous ships will become a reality within 

a limited time. Safety and reliability will be one of the primary challenges, ensuring that 

equipment and ship systems are in a proper working condition during voyages and that all 

inspections and repairs will be performed only on shore. For that, ship maintenance, like other 

industries, needs to change its perspective and move toward a "anticipate and prevent" 

philosophy using tools and methods to forecast technical failures at an early level for effective 

logistics planning. 

This paper presents a new perspective on how reliability analysis like F.T.A, and F.M.E.C.A, 

and fuzzy set theory can be used together with machine learning and simulation environments 

to assist maintenance decisions of onboard systems. 

The proposed approach creates a new model of automatic equipment evaluation with the aim of 

early signaling of equipment malfunction, elimination of human errors in operation, early 

notification for future repair, and improve safety. 
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1.  Introduction 

Naval equipment has increased in complexity, as science and technology have allowed the 

implementation of new features to increase operational safety and increase the level of reliability. 

However, their failure during the maintenance process, with human error as the main cause, is 

increasingly common [1]. 

Ships have an estimated lifecycle of 25-30 years but begin to decrease significantly in performance 

after 7-8 years after entering service [2]. The consequences of these performance losses contribute to 

the increase in downtime, unplanned and often significant costs for maintenance and repairs and the 

failure to fulfill the missions they must perform. 
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Managing operating data and maintenance data is vital for any equipment to meet performance 

characteristics over its designed lifecycle [3]. Technological advancement has required the development 

of automation systems, and by increasing the number of sensors, the data is available in digital format. 

Thus, expert systems were designed for equipment considered critical for the ship's operability, such as 

the propulsion system, the electrical energy system and the steering system, which proved their 

usefulness by increasing the level of reliability and safety of operation of the technique. 

Based on the ideas stated above, the research paper proposes several directions for using the 

operating data to optimize the maintenance process for equipment and auxiliary systems on board the 

ships. The paper presents the theoretical aspects of the methods and techniques identified through the 

analysis of the literature: risk analysis methods, simulation tools and artificial intelligence techniques. 

In the results and conclusions section, the possibilities of capitalization for the optimization of the 

maintenance process of the equipment on board the ships are presented. 

2.  Tools and methods for performance data analysis in maintenance 

System reliability calculations are important in their design. In addition, the results of the reliability 

analysis are used to prevent failures by implementing appropriate maintenance policies. Through the 

analysis of the literature, several methods and tools have been identified that can streamline current 

maintenance programs.  The main objective of risk analysis is to quantify possible events that may 

endanger a system and its functions. The results of the analysis require the development and 

implementation of safety measures in order to prevent the occurrence of these causes and reduce the 

consequences if they do materialize.  

Safety and reliability are rigorously evaluated during the design of technical systems. Some of the 

probabilistic risk assessment include failure tree analysis (FTA), failure mode and effects analysis 

(FMEA) and event tree analysis (ETA). For probabilistic risk analysis, data on equipment and 

component failures are required for the purpose of quantitative analysis [4]. Next, the first two methods 

of analysis, FTA and FMECA, are analyzed. 

2.1. Fault tree analysis 

Bell Telephone Laboratories originally created the FTA method in 1962 while designing protective 

measures for the U.S. Air Force's Minuteman intercontinental ballistic missile (ICBM) system. Later, 

the aircraft manufacturer, Boeing, took the method to the next level, both qualitatively and 

quantitatively, making it a popular method of analysis, widely used today to analyze the potential for 

failure of critical systems [5]. 

The FTA has proven to be an effective tool for analyzing and identifying areas for hazard mitigation 

and prevention during design, production, operation, or whenever a systematic risk assessment 

approach is required [6], providing a logical description of the empirical relationships between the peak 

event or final failure state and its potential causes [7], also serving as a graphical model representing 

those critical failure events for the system.  

 

Figure 1. Top events example for ship systems (adapted from [6]) 

FTA is considered an effective way to describe cause-and-effect relationships using a logic diagram. 

This is considered the starting point for the qualitative analysis of failure modes and, if the values of 

failure are known also quantitative analysis could be done. There are five steps to constructing an FTA: 

(1) defining the problem and identifying the limits (2) constructing the failure shaft, (3) determining the 



 
 

minimum sequences, (4) performing analyses (qualitative and quantitative), and (5) formulating safety 

measures [7]. Figure 2 identifies the main stages. 

Several possibilities for applying the FTA method in different industries, including the maritime 

one, are discussed in the research [8]. In addition, it revises the application procedure and incorporates 

fuzzy logic to take into account the interdependence of events. 

 

Figure 2. FTA construction process (adapted from [7]) 

The study [9] provides an overview of the possible failures for propulsion system. By analyzing the 

impact of disruptive events on the critical components/installations of a ship (the main engine), a 

method for evaluating the operating time without human intervention and assistance is conducted [10]. 

The propulsion system found on four identical ships is being analyzed for malfunctions. Important 

components for the reliability calculation of the system are highlighted, and through the RAM 

(Reliability Availability, and Maintainability) and FTA analysis, the possibilities for improving the 

system and the efficiency of the ship are highlighted [11]. However, the FTA method requires the 

involvement of highly qualified experts and only analyzes the causes of a potential failure, without 

considering its development [12]. 

For complex systems, simply observing the tree graph does not identify all possible combinations 

of events that can lead to failure. However, by supplementing with quantitative analysis, this limitation 

is eliminated. 

When quantitative analysis is performed, the so-called contributors that can lead to the failure of the 

evaluated system must be classified. This ranking is useful in planning maintenance tasks, allocating 

resources, and locating weaknesses in a technical system. The ranking techniques are: Birnbaum 

Importance Measure (BIM), Critical Factor Importance (CIF), Fussell-Vesely Method (FV), Risk 

Realization Value (RAW), Risk Reduction Value (RRW), and Differential Importance Measure (DIM). 

These methods are presented in research [13] along with a comparative analysis of the results obtained 

for a failure tree. 

2.2. Failure mode and effect analysis 

Failure Mode and Effect Analysis (FMEA) is a systematic method of assessing the impact of various 

risks, originally used in the aerospace industry in the mid-1960s, specifically for safety issues. While 

engineers have always analyzed processes and products for potential failures, the FMEA method 

standardizes the approach and establishes a common language that can be used both within companies 



 
 

and between companies [14].  With the addition of a new analysis, that of Criticality Analysis (CA), the 

method became known by the acronym FMECA. For an accurate and effective FMEA analysis, it is 

necessary to have as detailed information as possible about the system regarding: [15], [16] 

• the diagrams, the composition table and the list of materials; 

• block diagram of the system; 

• redundant elements; 

• the tasks to be carried out and the links with the other systems; 

• performance characteristics, peculiarities of operation and limitations of systems 

Even though the two methods have been applied and developed mainly in industrial production 

(components, subassemblies, machines, etc.), their use in the naval field has also contributed to 

increasing the level of safety and reliability of technical systems. 

To reactively address performance issues, identifying and eliminating the root causes of non-

conformities is a common practice. But technical improvements require a proactive approach, and the 

methodology for implementing the FMEA, shown in Figure 3, can respond to current challenges. 

 

Figure 3. FMECA analysis (adapted from [15] and [17]) 

FMEA begins with the analysis of the system, the working environment and the operating 

requirements, as well as changes in the configuration or position of the system and its components 

during operating regimes. Subsequently, using the data and knowledge about the process or system 

analyzed, each potential failure mode is evaluated according to the three indicators: occurrence 

(probability or frequency of failure occurring), severity (consequence of failure) and detection (failure 

to be observed before producing significant losses). The classification of failure modes is made 

according to the value of the risk score, RPN, obtained by multiplying the individual scores for the three 

risk indicators. The general principle of calculating the NPR, namely the prioritization of failure modes, 

was critical to a large extent because a weight of their importance is not taken into account [18]. After 

a detailed analysis of the research on improving the FMEA analysis, the following risk assessment 

tools/techniques/methods were identified: fuzzy logic, Multi Criteria Decision Analysis (MCDA), 

Analytic Hierarchy Process (AHP), Artificial Intelligence (AI) [19]. For the shipbuilding industry, the 

method was mainly applied to assess the reliability of installations and maintenance policies.   

Recent research papers propose the combined use of the two methods, FTA and FMECA. In the 

paper [20] the possible failure modes of the water installation on board the ship is studied. Research 

[21] proposes the use of the integration of the classic FTA and FMEA methods for the risk assessment 

of technical systems. Authors of research [22] uses the Reliability Block Diagram of the FTA and 

FMECA methods to modify the design of the ship lubrication plant in order to increase reliability and 

availability indicators. A recent article proposes the use of DFTA (Dynamic Fault Tree), FMECA and 

BBN (Bayesian Belief Network) to define component criticality and prioritize maintenance actions in 

relation to the severity of failures and ship missions [23]. 

2.3. Fuzzy set theory and application in the field of reliability 

In classic forms of risk analysis, failure rates, failure probabilities or other numerical data related to the 

failure behavior of system components are usually considered known. But in large and complex 

systems, not all of this data is known due to limited observation and a shortage of statistical data. 



 
 

The probability of failure of a relatively new component with insufficient historical failure data could 

theoretically be estimated on the basis of experience or from the data of similar components. 

Consequently, the safety and reliability of the system could be assessed on the basis of generic statistical 

data, which can be taken from existing reliability databases. Fuzzy logic offers a flexible method of 

dealing with imprecision because it operates with vague concepts and helps shape them to solve 

problems that arise. 

Fuzzy logic is a suitable tool that can easily and accurately determine critical elements of the system. 

It considers each level of risk factors and evaluates them simultaneously to deduce their common 

contribution to the undesirable event. They can help determine and implement corrective measures to 

reduce risks [24]. 

2.4. Modeling and simulation 

Modeling and simulation start with model elaboration as close as possible with the real-world 

corresponding system and used it for development, training, research, improvements or other alternative 

management strategies and decision-making processes [25]. 

Through modeling and simulation in the naval field, optimized tools have been created for the virtual 

representation of equipment, ships, the environment and navigation areas. These programs provide the 

versatile and realistic functionalities, through detailed situations/scenarios of the ships' architecture, 

onboard systems, operating procedures and port facilities. 

In the naval field, simulation has been used to create tools for the virtual representation of equipment, 

ships, the environment and navigation areas. These programs offer the versatile and realistic 

functionalities, through detailed situations/scenarios of the ships' architecture, their onboard systems, 

operating procedures and port facilities [26]. 

The simulation training process has a number of benefits, among which we identify: reduced costs, 

elimination of hazards or damages and repeatability of simulated situations [27]. A study conducted in 

2021 on the assessment of the response capacity of shipboard personnel in crisis situations identified 

that simulation training favors the perception of existing risks on board ships, the development of 

critical thinking, decision-making under pressure, learning from mistakes and encourages teamwork 

[26]. 

Computer-aided simulation uses algorithms, mathematical and logical models that describe the 

behavior of the real system (or some elements of it) over a period of time and provides a dynamic 

environment for the analysis of computer models with multiple visualization possibilities (2D, 3D, VR), 

as can be seen in figure 4.  

 
Figure 4. Maine engine operating console in ERS simulator 



 
 

An engine compartment simulator is built on mathematical models of the processes that ensure the 

operation of naval installations and equipment and allows the learner to follow the dynamics of his 

actions in real time. It offers possibilities to know the structure of each system, machine or device in 

the compartment, analysis of the operation and diagnostics, in other words a simulated model with 

characteristics and functionalities as close as possible to the real system [28]. 

Simulation training is regulated by the IMO and is part of the training process for maritime education 

graduates. However, the teaching and learning characteristics, value, and impact of this approach are 

insufficiently researched. One limitation of naval simulation is its focus on common human errors and 

associated responses, not on the broader application possibilities they could facilitate [29]. In any case, 

research on the use of naval simulators as teaching-learning tools is expanding and looking at staff 

motivation, standardization of academic modules, and approaches to crisis management and complex 

tasks [30], [31]. 

Naval simulators have been used in research since the appearance of the first models, in fact the 

research was the second capitalization of the possibilities they have, after the training of the aircrew for 

the acquisition of skills in operation and management of emergency situations.  

 In the paper [32] the failures of the fuel supply system of a diesel propulsion engine in two types 

MAN B&W 5L90MC were studied. The change in time of the values of the operating parameters and 

the observation of a symptom-failure link by means of a correlation matrix derived from fuzzy logic are 

analyzed. 

The possibility of using simulators in staff training to prevent dangerous situations is also discussed. 

A study was carried out whereby a potential hazard, such as the explosion of the engine crankcase, 

occurs as a result of the defect produced in its bearings [33]. 

Using the naval simulator, the thermodynamic analysis of the combustion process in the propulsion 

engine and their effect on the performance data was performed. Thus, through the simulated model, the 

possible malfunctions of the diesel engine are safely identified, without altering the operation of the 

real installation, as well as the detection of the symptoms of a malfunction in the early phase of 

manifestation. In addition, a fault database is obtained that can be used in reliability research and for 

diagnosing the technical condition of the system [34]. 

A recent paper presents the possibilities of improving maintenance plans, the reliability of the 

propulsion system and optimizing the operation of the turbocharger during the operation of the main 

engine by studying the failures of the turbocharging system and analyzing the combustion process [35] 

Through high computer processing power and improved features such as product design and user 

interface, software is much easier to use, reducing the expertise required for effective use [36].  

2.5. Machine learning technics 

Learning systems that replicate components or the operational state of an industrial process based on 

available data assigned to a specific state (a class), are increasing in maintenance engineering [37]. 

While traditional maintenance strategies (corrective and preventive) become ineffective in meeting 

the level of safety and efficiency required by the industry, equipment prognostics and health 

management (PHM) known as Condition Based Maintenance (CBM) can overcome these shortcomings 

[38]. 

Generally, there are two types of machine learning approaches, supervised, used to train a model by 

labeled data and unsupervised deals with unlabeled data, which means that the algorithm will identify 

the unique characteristics of the data and divide them accordingly [39], [40]. Unsupervised learning is 

useful for data exploration to understand the natural pattern of data, particularly when there is no 

specific information about significant incidents in the data that can easily indicate error indicators [41].  

Different algorithms such as decision trees, discriminant analysis, vector support, kNN classifiers, 

Bayes naïve classifiers. These algorithms analyze data distributions, find separation hyperplanes, or 

consider proximity to neighboring points to accurately classify failures [42]. The kNN algorithm has a 

simple construction and is used for the analysis of new situations by referring to similar situations 



 
 

analyzed before. One method to determine the final accuracy of predictions is the confusion matrix, 

which compares the actual values with those predicted by the machine learning model. 

By integrating ML into naval reliability modeling and maintenance decision-making, ships can 

increase operational effectiveness, reduce costs, and ensure that critical systems function optimally 

throughout their lifecycles. ML techniques play a significant role in naval reliability modeling and 

maintenance decision-making by leveraging data-driven approaches to optimize operations, reduce 

costs, and enhance the safety and performance of naval systems. 

ML models, such as predictive analytics and anomaly detection, enable early identification of 

equipment malfunctions and potential failures, allowing for proactive maintenance rather than reactive 

repairs. Additionally, ML aids in CBM, where real-time sensor data is analysed to assess the health of 

naval systems, reducing unnecessary maintenance activities and extending asset lifespans. 

One of the key benefits is improved predictive accuracy. ML models learn from historical data to 

forecast outcomes such as equipment failures, future demand, or operational risks, enabling proactive 

measures like predictive maintenance. This helps reduce unexpected downtimes and unnecessary 

maintenance, improving overall system reliability. 

In conclusion, ML helps organizations reduce costs, improve accuracy and increase operational 

efficiency, making it a powerful tool for solving complex problems across various industries, including 

naval reliability modeling and maintenance. 

3.  Integrating proposed tools and methods in maintenance of naval equipment 

Considering the theme of the research, in this stage the concept of integrating risk and reliability analysis 

methods and tools for the optimization of the maintenance program is presented. 

Based on the two risk analysis methods, FTA and FMECA, the causal chain of failures, the level of 

reliability and the possible failure modes for a given equipment on board the ship are assessed. A 

common problem for reliability analyses is the volume and validity of performance data and the history 

of technical maintenance work, given the operational characteristics of the vessel. In addition, the 

complete obtaining of exploitation data can be difficult, due to infrastructure, data security and the level 

of development of monitoring programs. 

Even if in the naval field the legislation requires the existence of remote surveillance and operation 

systems, there is no possibility of monitoring all the components and all the operating parameters.  

Two possibilities have been chosen to reduce the effects of this limitation. For the analysis of 

reliability data and maintenance history, fuzzy logic is used and for the validity of the performance data, 

the naval simulator will be used, by creating a simulated model of the system under analysis.    

Figure 5 shows the proposal to use the data to create a fault diagnosis model and prioritise the 

maintenance of the four-stage technique: 

• failure shaft analysis and calculation of system reliability based on component reliability 

data;  

• identification of the causes of failures by the FMEA method; collecting data on frequency, 

detectability and severity, based on expert knowledge and simulating failures on the plant 

model; calculation of the RPN number by the fuzzy method (FRPN); implementation of 

Risk-Based Maintenance policies; 

• study of the effects of failures on the simulated model; analysis of exploitation data and 

evaluation based on simulation tools; implementation of Maintenance Policies Based on 

Operating Conditions; 

• storing all relevant information in a common database, for the creation of the machine 

learning model, integrated data analysis and establishing maintenance execution rules for 

the analyzed systems. 



 
 

 
Figure 5. Integrated analysis of performance data, simulation and machine learning to optimize 

maintenance program 

Through machine learning techniques, failure modes, and the level of operating data can be classified 

for further evaluation and predictions on the functional status of the equipment.  

Figure 6 shows the model adapted from the work of [43] and [44], for creating a software program 

in which machine learning techniques are used. System analysis is necessary to identify critical points 

and corresponding variables representing the states in which the system may be at any given time. 

Through integrated analysis, the model can be used for almost any type of facility, not only to improve 

and/or automate operation, but also to understand the associated relationships and variables. In addition, 

the results of the FTA and FMEA analyses will be used as inputs for the creation of the machine learning 

model. 

  
Figure 6 Stages for developing a machine learning model (adapted from [43], [44]) 

The model continues with the stage of collecting data from the equipment sensors, which convert 

values from current operation into digital signals transmitted to the control and monitoring system for 

continuous analysis. The data is stored and can be extracted for further analysis. This raw data must be 

processed and transformed to distinguish between normal and defective states of the system through 

techniques such as managing missing values, correcting inconsistent data, normalizing, encoding 

certain values, removing incorrect values, and removing irrelevant features. This stage is known in the 

literature as the feature generation process. In general, this process starts from an initial set of measured 

data and leads to derived values (functions) that will simplify the subsequent phases of learning and 



 
 

modeling. Since it is a comprehensive process that involves several iterations, the resulting database 

will have a high degree of quality, allowing analyses to be developed to generate reliable results. 

In the implementation and testing stages, the program is developed. This is done programmatically, 

that is, coding the actions that the computer must perform to achieve the goals, with activities that 

include writing the source code, compiling, editing links, and debugging the program. 

After the program is completed, it is put into operation, that is, it is used in the current activities for 

which it was created. The lifecycle is completed with the update stage through actions to resolve issues 

that occur during operation, configuration, and updates. All of this is reinforced in application 

maintenance activities. If subsequent changes to the released version result in improvements in the 

program's features, a new application development cycle may begin, which involves repeating all the 

described steps. 

4.  Conclusions 

The paper presented the concept of integrating risk and reliability analysis methods and tools for 

optimizing the maintenance program. After a brief introduction in the field of naval technical 

maintenance, the theoretical aspects of each method and the contributions of the research papers that 

addressed these topics were briefly presented. The main directions through which these methods can be 

integrated into the study were formulated and the conceptual framework for the implementation of the 

integrated analysis was presented. 

In developing the framework, several methods were considered, including FTA, FMEA, fuzzy 

evaluation RPN and fault detection through machine learning techniques. ML provides significant 

advantages by enabling data-driven decision-making and automating complex tasks. It excels in 

processing large datasets, uncovering patterns, and generating insights that improve accuracy and 

efficiency. This allows organizations to optimize operations and make more informed, timely decisions. 

ML also supports real-time monitoring and anomaly detection. By continuously analyzing data, it 

can quickly identify unusual patterns or early signs of issues, allowing for immediate corrective actions. 

This is especially valuable in critical systems, where early detection can prevent costly failures or 

downtime. 

The author considers it necessary to design a program that integrates the results obtained and that 

can contribute to improving maintenance by assessing the technical condition of the equipment, using 

performance data, analyzing the causes of failures and operating safely. 
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