

Volume XXVII 2024

ISSUE no.2

MBNA Publishing House Constanta 2024

doi: 10.21279/1454-864X-24-I2-026
SBNA© 2024. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER • OPEN ACCESS

Structurizr DSL: A Tool for Expressive Architectural

Documentation in Maritime Software Projects
To cite this article: Andrei Băutu, Anca Atodiresei and Elena Băutu, Scientific Bulletin of Naval

Academy, Vol. XXVII 2024, pg. 220-224

Submitted: 29.03.2024

Revised: 28.11.2024

Accepted: 05.12.2024

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

http://www.anmb.ro/

Structurizr DSL: A Tool for Expressive Architectural
Documentation in Maritime Software Projects

Andrei Băutu1, Anca Atodiresei2 and Elena Băutu3

1 Romanian Naval Academy, Romania, andrei.bautu@anmb.ro
2 Romanian Naval Academy, Romania, anca.atodiresei@anmb.ro
3 “Ovidius” University, Romania, ebautu@univ-ovidius.ro

Abstract. This article discuses the usage of Structurizr Domain-Specific Language (DSL) as a
tool for generating expressive architectural documentation in maritime software projects. By
defining system architecture using code, software engineers can maintain consistency, version
control, and automate the generation of architecture diagrams. The article provides an
overview of the Structurizr DSL and outlines advantages and limitations of using it during
development of maritime software.

1. Introduction
Architectural documentation plays an essential role in the development and maintenance of software
systems, ensuring clarity of communication between the parties involved and facilitating system
adaptation and expansion. In the field of maritime software, the complexity and specificity of
applications require well-structured and up-to-date architectural documentation capable of clearly
describing the interactions between components, data flows and compliance with maritime standards.
This type of documentation becomes indispensable for the development of robust and secure systems,
such as those used in automatic navigation, ship monitoring or fleet management.

Domain-Specific Languages (DSL) represent an innovative approach to generating architectural
documentation. Unlike general-purpose programming languages, a DSL is designed to directly model
domain-specific structures and concepts [1]. Using a DSL for architectural documentation, such as
Structurizr DSL, allows the description of the system architecture through code, thus offering
numerous advantages. These include maintaining documentation consistency, version control, and
automating diagram generation.

Structurizr DSL was designed to simplify and improve the architectural documentation process,
making it a suitable tool for marine software projects where accuracy and clarity are critical. As a DSL
that easily integrates with popular programming languages and development platforms, Structurizr
DSL enables engineers to build expressive and precise architectural documentation based on precise
and maintainable specifications [2][3].

Many software architecture tools are currently available to software engineering teams [4][5]. The
purpose of this article is to explore in the capabilities of Structurizr DSL in the context of maritime
software projects. The article will provide an overview of the syntax of this language and how it can
be used to effectively document the architecture of maritime applications. During the presentation, the
advantages of using a DSL dedicated to architectural documentation will be discussed, as well as the
limitations and potential directions for improvement.

mailto:ebautu@univ-ovidius.ro
mailto:anca.atodiresei@anmb.ro
mailto:andrei.bautu@anmb.ro

The results presented in this article are intended to demonstrate how the use of Structurizr DSL
contributes to the development of accurate and relevant architectural documentation in the context of
maritime projects, providing a scalable and easy-to-maintain solution to the challenges of this field.

The following sections discuses the principles of architectural documentation and the challenges
faced in the maritime industry. Section 3 presents a brief overview of the syntax and features of
Structurizr DSL, illustrating its capabilities in modeling complex systems. In Section 4, we analyze the
benefits and limitations of using Structurizr DSL within the context of maritime software
development.

2. Domain Specific Languages in the context of architectural documentation
In complex software projects, maintaining consistent and clear architectural documentation is an
ongoing challenge. Domain-Specific Language (DSL) were developed to provide domain-specific
solutions, simplifying tasks that, with general-purpose languages, would have been time-consuming
and error-prone. A DSL is essentially a language designed to model domain-specific concepts and
structures, making it easy to express intents and structures in an intuitive and efficient way for users of
that domain.

In architectural documentation, using a DSL brings several significant advantages:
• Clarity and expressiveness: A DSL can capture domain specificities, allowing users to directly

describe architectural structures without ambiguity. For example, a DSL dedicated to
architectural documentation will have terms and constructs that reflect concepts such as
components, relationships, and data flows, making the documentation more intuitive and
easier to understand for those who use it.

• Documentation automation and consistency: Compared to manual methods, using a DSL
allows automation of documentation generation, which ensures consistency and eliminates
common errors. Architectural frameworks can be updated automatically and documentation
stays in sync with the source code, which is essential in long-running software projects.

• Version control and maintenance: Being code-based, a DSL can be managed using version
control systems such as Git. This allows changes in the architecture to be tracked over time,
facilitating audit and maintenance processes. Maintenance also becomes simpler, as
architectural changes are reflected in the documentation almost instantly.

• Integration with other tools: Most DSLs are designed to integrate with other technologies and
languages, making them easier to use within broader software development processes.
Structurizr DSL, for example, can automatically generate diagrams and can be used in
conjunction with general-purpose programming languages such as Java or C# to provide
detailed and customizable documentation.

In the context of maritime software projects, architectural complexity is amplified by domain-
specific requirements: safety standards, integration with navigational equipment, and compliance with
maritime regulations. Maritime software applications such as ship monitoring, maritime traffic
management and weather forecasting require architectures to facilitate system security,
interoperability and scalability.

A dedicated DSL for architectural documentation allows designers and engineers to model the
structure of marine software in a way that meets these requirements and facilitates architectural
compliance analysis. For example, such a language can help clearly model interactions between
safety-critical components, describe data flows, and identify integration points with other external
systems, such as sensors and communication systems.

Structurizr DSL is an example DSL designed to support the creation of expressive and structured
architectural documentation. Unlike other traditional approaches, such as UML diagrams [6] or
manual description models, Structurizr DSL enables the automatic generation of diagrams and the
description of architectural structures through code. This method offers the advantage of consistency

and automation, and in the maritime field it proves to be a suitable choice due to its ability to describe
the complexity and particularities of maritime applications.

3. Structurizr DSL
Structurizr DSL (Domain-Specific Language) is a domain-specific language designed to enable clear
and concise architectural documentation through code. Developed as part of the Structurizr platform,
this DSL provides developers and architects with an efficient way to describe the architecture of
software systems by automatically generating diagrams that illustrate the structure and component
interactions. In this way, Structurizr DSL combines the precision and flexibility of domain-specific
languages with the advantages of automation, consistency, and integration with version control.

Structurizr DSL is designed to be easy to understand and use, even by those without advanced
programming knowledge. Its syntax enables the rapid definition of architectural components, their
relationships, and levels of abstraction, as well as the generation of multiple views of the same
architecture.

Among the essential concepts of Structurizr DSL are:
• System Context: Allows the software system to be described in a holistic way, highlighting

interactions with external systems and users.
• Containers: Structurizr DSL uses the concept of containers to delineate major subsystems or

modules within the architecture. For example, a container can represent a web application, a
database service, or a data processing module.

• Components: Within each container, Structurizr DSL allows the definition of individual
components, such as classes, services, or libraries, highlighting their roles and how they work
together to perform system functionality.

• Relationships: Relationships between components, containers, and external systems can be
clearly specified, indicating data flow and architectural dependencies.

The simplified code structure allows a concise definition of the architecture. For example, the
following Structurizr DSL code snippet illustrates a basic architectural description for a maritime
software system:
workspace {
 model {
 user = person "Maritime operator" {
 description "Uses the software for ship monitoring."
 }

 system = softwareSystem "Maritime monitoring system" {
 description "Monitors in real time the status of ships."

 webapp = container "Web application" {
 description "Allows operator to view monitoring data."
 technology "ReactJS, Node.js"
 }

 database = container "Data base" {
 description "Stores data for each ship."
 technology "PostgreSQL"
 }

 user -> webapp "Access monitoring data"
 webapp -> database "Query and update data"
 }
 }

 views {
 systemContext system {
 include *
 autolayout lr
 }

 container system {
 include *
 autolayout tb
 }

 theme default
 }
}

The code above describes a simple marine monitoring system, which includes a user (the marine
operator) and a marine monitoring system (composed of a web application and a database). In
addition, the Structurizr DSL allows defining the relationships between these components, making it
easier to understand how users and systems interact.

Structurizr DSL can be used with popular programming languages such as Java, C# or Python due
to its ability to generate documentation independent of the system's implementation language. This
allows developers to integrate Structurizr DSL directly into their workflows and use version control
tools to manage and track architectural changes.

An important aspect of integration is the ability of Structurizr DSL to be used in continuous
development (CI/CD) environments, so that architectural documentation is automatically generated
and updated with each architecture change. This automation ensures that the documentation is always
in sync with the source code and significantly reduces the risk of discrepancies between code and
documentation.

4. Applications of Structurizr DSL in maritime software projects
Structurizr DSL offers a set of advantages that make it ideal for use in maritime software projects:

• Accuracy and clarity of documentation: Structurizr DSL enables the description of
architecture at the system, container, and component levels, facilitating a deep understanding
of the structures and interactions between different parts of the system. In maritime software
projects, where architectures can include complex modules such as navigation systems and
monitoring sensors, this clarity is crucial.

• Automation of diagram generation: Architectural documentation can be automatically
generated, eliminating the need for manual diagramming and ensuring constant updating. In
the maritime field, where safety regulations and requirements can evolve rapidly, this feature
becomes valuable, reducing the time and resources needed to update documentation.

• Flexibility in change management: Structurizr DSL enables easy management of architectural
changes, and version control provides clear traceability of changes over time. Thus, when new
requirements or changes in regulatory rules arise, the documentation can be efficiently
adjusted, maintaining the history of changes and facilitating the audit of the architecture.

Some limitations also need to be taken into account when planning to use this DSL:
• The Learning Curve: Structurizr DSL is relatively easy to use, but teams with no experience

using DSLs or documenting architecture through code may experience initial difficulties. This
learning curve can be an impediment to rapid adoption of this tool, especially in projects that
require a rapid transition to a new documentation methodology.

• Limitations in Documenting Operational Details: Structurizr DSL focuses on describing the
architectural structure and relationships between components, but does not provide detailed
support for documenting operational aspects such as specific network configurations,

performance parameters, or monitoring system activity. In marine projects, where safety and
performance are critical, this limitation may require supplementing the architectural
documentation with other tools or additional descriptions to cover these details.

• Lack of Flexibility for Custom Views: Some projects may require highly customized
architectural visualizations to meet specific presentation requirements. Structurizr DSL does
not always allow fine-grained control over the styling and customization of visualizations.

Therefore, Structurizr DSL represents a valuable tool for architectural documentation in maritime
software projects, combining the advantages of domain-specific languages with the automation and
flexibility required in this dynamic domain.

5. Conclusions
This article explores the use of Structurizr DSL as an architectural documentation tool in maritime
software projects, highlighting both the benefits and limitations of this approach.

Using Structurizr DSL significantly improves the efficiency of the architectural documentation
process. By modeling system architecture in an expressive way and automatically generating
diagrams, teams can reduce the time and effort required to update documentation. The ability to
integrate architectural changes in an efficient way is crucial in the dynamic environment of software
development. Structurizr DSL enables teams to quickly respond to changes while keeping
documentation up-to-date and relevant.

Although Structurizr DSL has many advantages, it is important to recognize its limitations, such as
the learning curve and lack of operational detail. These limitations must be considered when
evaluating its use in specific projects.

References
[1] Fowler, Martin. Domain-specific languages. Pearson Education, 2010.
[2] Chiu, Kevin, Sean Marquez, and Sharanabasaweshwara Asundi. "Model Based Systems
Engineering with a Docs-as-Code Approach for the SeaLion CubeSat Project." Systems 11.7 (2023):
320.
[3] Nicacio, Jalves, and Fabio Petrillo. "An approach to build consistent software architecture
diagrams using devops system descriptors." Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. 2022.
[4] Rashidi, Hassan, Zahra Rashidi, and Zeynab Rashidi. "Software Architecture Tools-A
Classification and Survey with Recommendation for an Organization." Journal of Computing and
Security 10.2 (2023): 61-81.
[5] Darvas, Adam, and Raimund Konnerth. "System architecture recovery based on software structure
model." 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2016.
[6] Fowler, Martin. UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional, 2018.

	46.pdf (p.1)
	46.pdf (p.2-6)

