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AbstractWe establish necessary and su�cient optimality condition for a class of nondi�erentiableminmax fractional programming problems with square root terms involving (�; �; �)-invexfunctions. Subsequently, we apply the optimality condition to formulate a parametric dualproblem and we prove weak duality, strong duality, and strict converse duality theorems.
1 Introduction
Let us consider the following continuous di�erentiable mappings:

f : Rn � Rm ! R; h : Rn � Rm ! R;g : Rn ! Rp;
with g = (g1; � � � ; gp) : We denote

P = fx 2 Rn j gj (x) � 0; j = 1; 2; � � � ; pg (1)
and consider Y � Rm to be a compact subset of Rm: Let Br; r = 1; �; and Dq; q = 1; �; be n� npositive semide�nite matrices such that for each (x; y) 2 P � Y; we have:

f (x; y) + �X
r=1

px>Brx � 0 and h (x; y)� �X
q=1

qx>Dqx > 0:
We consider the following minmax fractional programming problem:

infx2P supy2Y
 f (x; y) + �X

r=1
px>Brx! h (x; y)� �X

q=1
qx>Dqx!�1 (P)

For � = � = 1; this problem was studied by Lai et al. [4], and further, if B1 = D1 = 0; (P)is a di�erentiable minmax fractional programming problem which has been studied by Liu andWu [5]. Many authors investigated the optimality conditions and duality theorems for minmax(fractional) programming problems. For details, one can consult [4, 7]. Problems which containsquare root terms were �rst studied by Mond [6]. Some extensions of Mond's results were obtained,for example, by Chandra et al. [2], Zhang and Mond [12], Preda and K�oller [8].In an earlier work, under conditions of convexity, Schmittendorf [10] established necessary andsu�cient optimality conditions for the problem:
infx2P supy2Y  (x; y) ; (P1)

where  : Rn � Rm ! R is a continuous di�erentiable mapping.
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2 Notations and Preliminary Results
Throughout this paper, we denote by Rn the n-dimensional Euclidean space and by Rn+ its non-negative orthant. Let us consider the set P de�ned by (1), and for each x 2 P; we de�ne

J (x) = fj 2 f1; 2; � � � ; pg j gj (x) = 0g ;
Y (x) =

8>>><>>>:y 2 Y
���������
f (x; y) + �Pr=1px>Brx
h (x; y)� �Pq=1px>Dqx = supz2Y

f (x; z) + �Pr=1px>Brx
h (x; z)� �Pq=1px>Dqx

9>>>=>>>; ;

K (x) =
8>><>>:(s; t; �y) 2 N� Rs+ � Rms

��������
1 � s � n+ 1; sPi=1 ti = 1;and �y = (�y1; � � � ; �ys) 2 Rmswith �yi 2 Y (x) ; i = 1; s

9>>=>>; :
Since f and h are continuous di�erentiable functions and Y is a compact set in Rm; it follows thatfor each x0 2 P; we have Y (x0) 6= ;; and for any �yi 2 Y (x0) ; we denote

k0 =  f (x0; �yi) + �X
r=1

qx>0 Brx0! h (x0; �yi)� �X
q=1

qx>0 Dqx0!�1 : (2)
Let A be an m�n matrix and letM; Mi; i = 1; � � � ; k; be n�n symmetric positive semide�nitematrices.

Lemma 1 [11] We have

Ax � 0 ) c>x+ kX
i=1
px>Mix � 0;

if and only if there exist y 2 Rm+ and vi 2 Rn; i = 1; k; such that

Avi � 0; v>i Mivi � 1; i = 1; k; A>y = c+ kX
i=1Mivi:

Lemma 2 [10] Let x0 be a solution of the minmax problem (P1) and the vectors rgj (x0) ;j 2 J (x0) are linearly independent. Then there exist a positive integer s; 1 � s � n + 1; real
numbers ti � 0; i = 1; s; �j � 0; j = 1; p; and vectors �yi 2 Y (x0) ; i = 1; s; such thatsX

i=1 tirx (x0; �yi) + pX
j=1 �jrgj (x0) = 0; �jgj (x0) = 0; j = 1; p; sX

i=1 ti 6= 0:
Now we give the de�nitions of (�; �; �)-quasi-invexity and (�; �; �)-pseudo-invexity as extensionsof the invexity notion.

De�nition 3 A di�erentiable function ' : C � Rn ! R is (�; �; �)-invex at x0 2 C if there exist
functions � : C � C ! Rn; � : C � C ! R+ and � 2 R such that

' (x)� ' (x0) � � (x; x0)>r' (x0) + �� (x; x0) :
If �' is (�; �; �)-invex at x0 2 C; then ' is called (�; �; �)-incave at x0 2 C:
If the inequality holds strictly, then ' is called to be strictly (�; �; �)-invex.
De�nition 4 A di�erentiable function ' : C � Rn ! R is (�; �; �)-pseudo-invex at x0 2 C if there
exist functions � : C � C ! Rn; � : C � C ! R+ and � 2 R such that the following hold:

� (x; x0)>r' (x0) � ��� (x; x0) =) ' (x) � ' (x0) ; 8x 2 C;



De�nition 5 A di�erentiable function ' : C � Rn ! R is strictly (�; �; �)-pseudo-invex at x0 2 C
if there exist functions � : C � C ! Rn; � : C � C ! R+ and � 2 R such that the following hold:

� (x; x0)>r' (x0) � ��� (x; x0) =) ' (x) > ' (x0) ; 8x 2 C; x 6= x0:
De�nition 6 A di�erentiable function ' : C � Rn ! R is (�; �; �)-quasi-invex at x0 2 C if there
exist functions � : C � C ! Rn; � : C � C ! R+ and � 2 R such that the following hold:

' (x) � ' (x0) =) � (x; x0)>r' (x0) � ��� (x; x0) ; 8x 2 C:
3 Necessary and Su�cient Optimality Conditions
For any x 2 P; let us denote the following index sets:

B (x) = �r 2 f1; 2; � � � ; �g j x>Brx > 0	 ;B (x) = f1; 2; � � � ; �g n B (x) = �r j x>Brx = 0	 ;
D (x) = �q 2 f1; 2; � � � ; �g j x>Dqx > 0	 ;D (x) = f1; 2; � � � ; �g n D (x) = �q j x>Dqx = 0	 :

Using Lemma 2, we may prove the following necessary optimality conditions for problem (P).
Theorem 7 (Necessary Condition) If x0 is an optimal solution of problem (P) for whichB (x0) = ;; D (x0) = ;; and rgj (x0) ; j 2 J (x0) are linearly independent, then there exist(s; �t; �y) 2 K (x0) ; k0 2 R+; wr 2 Rn; r = 1; �; vq 2 Rn; q = 1; �; and �� 2 Rp+ such that

sX
i=1 �ti

"rf (x0; �yi) + �X
r=1Brwr � k0 rh (x0; �yi)� �X

q=1Dqvq!#+ pX
j=1 ��jrgj (x0) = 0; (3)

f (x0; �yi) + �X
r=1

qx>0 Brx0 � k0 h (x0; �yi)� �X
q=1

qx>0 Dqx0! = 0; 8 i = 1; s; (4)
pX

j=1 ��jgj (x0) = 0; (5)
�ti � 0; sX

i=1 �ti = 1; (6)
w>r Brwr � 1; x>0 Brwr =px>0 Brx0; r = 1; �;
v>q Dqvq � 1; x>0 Dqvq =qx>0 Dqx0 q = 1; �:

9>=>; (7)
We notice that, in the above theorem, all matrices Br and Dq are supposed to be positivede�nite. If at least one of B (x0) or D (x0) is not empty, then the functions involved in theobjective function of problem (P) are not di�erentiable. In this case, the necessary optimalityconditions still hold under some additional assumptions. For x0 2 P and (s; �t; �y) 2 K (x0) wede�ne the following vector:
� = sX

i=1 �ti
0@rf (x0; �yi) + X

r2B(x0)
Brx0px>0 Brx0 � k0

0@rh (x0; �yi)� X
r2D(x0)

Dqx0qx>0 Dqx0
1A1A

Now we de�ne a set Z as follows:



Z�y (x0) =
8>><>>:z 2 Rn

��������
z>rgj (x0) � 0; j 2 J (x0) ;
z>�+ sPi=1 �ti

 Pr2B(x0)
pz>Brz + Pq2D(x0)

rz> �(k0)2Dq� z! < 0
9>>=>>;

If one of the index sets involved in the above expressions is empty, then the correspondig sumvanishes.Using Lemma 1, we establish the following result:
Theorem 8 Let x0 be an optimal solution of problem (P) and at least one of B (x0) or D (x0)
is not empty. Let (s; �t; �y) 2 K (x0) be such that Z�y (x0) = ;: Then there exist vectors wr 2 Rn;r = 1; �; vq 2 Rn; q = 1; �; and �� 2 Rp+ which satisfy the relations (3) - (7).

For convenience, if a point x0 2 P has the property that the vectors rgj (x0) ; j 2 J (x0) ;are linear independent and the set Z�y (x0) = ;; then we say that x0 2 P satisfy a constraint
quali�cation.The results of Theorems 7 and 8 are the necessary conditions for the optimal solution of problem(P). Actually, the conditions (3) - (7) are also the su�cient optimality conditions for (P), for whichwe state the following result involving generalized invex functions, which are weaker assumptionsthan Lai et al. use in [4].
Theorem 9 (Su�cient Conditions) Let x0 2 P be a feasible solution of (P) and there exist a
positive integer s; 1 � s � n+ 1; �yi 2 Y (x0) ; i = 1; s; k0 2 R+; de�ned by (2), �t 2 Rs+; wr 2 Rn;r = 1; �; vq 2 Rn; q = 1; �; and �� 2 Rp+ such that the relations (3) - (7) are satis�ed. If any one
of the following four conditions holds:

(a) f ( � ; �yi) + �Pr=1 ( � )>Brwr is (�; �i; �)-invex, h ( � ; �yi) � �Pq=1 ( � )>Dqvq is (�; �0i; �)-incave for

i = 1; s; pPj=1 ��jgj ( � ) is (�; �0; �)-invex, and�0 + sPi=1 �ti (�i + �0ik0) � 0;
(b) � ( � ) = sPi=1 �ti

"f ( � ; �yi) + �Pr=1 ( � )>Brwr � k0 h ( � ; �yi)� �Pq=1 ( � )>Dqvq!# is (�; �; �)-invex
and

pPj=1 ��jgj ( � ) is (�; �0; �)-invex, and �+ �0 � 0;
(c) � ( � ) is (�; �; �)-pseudo-invex and

pPj=1 ��jgj ( � ) is (�; �0; �)-quasi-invex, and �+ �0 � 0;
(d) � ( � ) is (�; �; �)-quasi-invex, pPj=1 ��jgj ( � ) is strictly (�; �0; �)-pseudo-invex, �+ �0 � 0;
then x0 is an optimal solution of (P).

4 Duality
Let us consider the set H (s; t; y) consisting of all (z; �; k; v; w) 2 Rn�Rp+�R+�Rn��Rn� ; wherev = (v1; � � � ; v�) ; vq 2 Rn; q = 1; �; and w = (w1; � � � ; w�) ; wr 2 Rn; r = 1; �; which satisfy thefollowing conditions:

sX
i=1 ti

"rf (z; yi) + �X
r=1Brwr � k rh (z; yi)� �X

q=1Dqvq!#+ pX
j=1 �jrgj (z) = 0; (8)



sX
i=1 ti

"f (z; yi) + �X
r=1 z>Brwr � k h (z; yi)� �X

q=1 z>Dqvq!# � 0; (9)
pX

j=1 �jgj (z) � 0; (10)
(s; t; y) 2 K (z) (11)w>r Brwr � 1; r = 1; �; v>q Dqvq � 1; q = 1; �: (12)The optimality conditions, stated in the preceding section for the minmax problem (P), suggestus to de�ne the following dual problem:

max(s;t;y)2K(z) sup fk j (z; u; k; v; w) 2 H (s; t; y)g (DP)
If, for a triplet (s; t; y) 2 K (z) ; the set H (s; t; y) = ;; then we de�ne the supremum overH (s; t; y) to be �1: Further, we denote

� ( � ) = sX
i=1 ti

"f ( � ; yi) + �X
r=1 ( � )>Brwr � k h ( � ; yi)� �X

q=1 ( � )>Dqvq!#
Now, we can state the following weak duality theorem for (P) and (DP).

Theorem 10 (Weak Duality) Let x 2 P be a feasible solution of (P) and(x; �; k; v; w; s; t; y) be a feasible solution of (DP). If any of the following four conditions
holds:

(a) f ( � ; yi) + �Pr=1 ( � )>Brwr is (�; �i; �)-invex, h ( � ; yi) � �Pq=1 ( � )>Dqvq is (�; �0i; �)-incave for

i = 1; s; pPj=1�jgj ( � ) is (�; �0; �)-invex, and�0 + sPi=1 ti (�i + �0ik) � 0;
(b) � ( � ) is (�; �; �)-invex and

pPj=1�jgj ( � ) is (�; �0; �)-invex, and �+ �0 � 0;
(c) � ( � ) is (�; �; �)-pseudo-invex and

pPj=1�jgj ( � ) is (�; �0; �)-quasi-invex, and �+ �0 � 0;
(d) � ( � ) is (�; �; �)-quasi-invex, pPj=1�jgj ( � ) is strictly (�; �0; �)-pseudo-invex, �+ �0 � 0;
then

supy2Y
 f (x; y) + �X

r=1
px>Brx! h (x; y)� �X

q=1
qx>Dqx!�1 � k (13)

Theorem 11 (Strong Duality) Let x� be an optimal solution of problem (P). Assume thatx� satis�es a constraint quali�cation for (P). Then there exist (s�; t�; y�) 2 K (x�) and(x�; ��; k�; v�; w�) 2 H (s�; t�; y�) such that (x�; ��; k�; v�; w�; s�; t�; y�) is a feasible solution of
(DP). If the hypotheses of Theorem 10 are also satis�ed, then (x�; ��; k�; v�; w�; s�; t�; y�) is an
optimal solution for (DP), and both problems (P) and (DP) have the same optimal values.

Theorem 12 (Strict Converse Duality) Let x� and
��z; ��; �k; �v; �w; �s; �t; �y� be the optimal solu-

tions of (P) and (DP), respectively, and that the hypotheses of Theorem 11 are ful�lled. If any one
of the following three conditions holds:



(a) one of f ( � ; �yi)+ �Pr=1 ( � )>Br �wr is strictly (�; �i; �)-invex, h ( � ; �yi)� �Pq=1 ( � )>Dq�vq is strictly

(�; �0i; �)-incave for i = 1; s; or pPj=1 ��jgj ( � ) is strictly (�; �0; �)-invex, and
�0 + sPi=1 �ti ��i + �0i�k� � 0;

(b) either
sPi=1 �ti

"f ( � ; �yi) + �Pr=1 ( � )>Br �wr � �k h ( � ; �yi)� �Pq=1 ( � )>Dq�vq!# is strictly (�; �; �)-
invex or

pPj=1 ��jgj ( � ) is strictly (�; �0; �)-invex, and �+ �0 � 0;
(c) the function

sPi=1 �ti
"f ( � ; �yi) + �Pr=1 ( � )>Br �wr � �k h ( � ; �yi)� �Pq=1 ( � )>Dq�vq!# is strictly

(�; �; �)-pseudo-invex and
pPj=1 ��jgj ( � ) is (�; �0; �)-quasi-invex, and �+ �0 � 0;

then x� = �z; that is, �z is an optimal solution for problem (P) and

supy2Y
 f (�z; y) + �X

r=1
p�z>Br�z! h (�z; y)� �X

q=1
q�z>Dq�z!�1 = �k:

5 Special Cases
If we consider special cases of the results presented in this paper, we may retrieve some previousresults obtained by other authors.

1. If we consider � = � = 1; we obtain the results obtained by Lai et al. [4].
2. If Br = 0; r = 1; �; and Dq = 0; q = 1; �; we obtain the results of Liu and Wu [5].
3. If the set Y is a singleton, � = 1; h � 1 and Dq = 0; q = 1; �; we obtain the results presentedrespectively in Mond [6], Chandra et al. [2], Zhang and Mond [12], Preda and K�oller [8].
4. For the case of the generalized fractional programming [1, 3], the set Y can be taken as thesimplex Y = �y 2 Rm ���� yi � 0; mPi=1 yi = 1� ; Br = 0; r = 1; �; and Dq = 0; q = 1; �; and

f(x; y)h(x; y) =
 mX

i=1 yifi (x)
! mX

i=1 yihi (x)
!�1 :

In this case the dual (DP) reduces to the dual problem of [1].
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