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Abstract

We establish necessary and sufficient optimality condition for a class of nondifferentiable
minmax fractional programming problems with square root terms involving (7, p,#)-invex
functions. Subsequently, we apply the optimality condition to formulate a parametric dual
problem and we prove weak duality, strong duality, and strict converse duality theorems.

1 Introduction

Let us consider the following continuous differentiable mappings:
f o R*xR™ 3R, h:R*"xR™— R,
g : R" > RP

with g = (91, -+, gp) . We denote

and consider Y C R™ to be a compact subset of R™. Let B,, 7 = 1,3, and D, ¢ =1,5, be n x n
positive semidefinite matrices such that for each (z,y) € P x Y, we have:

5
f(z,y) +Z\/.’ETB.T>O and h(z,y)— Z\/mTqu>0.
g=1

We consider the following minmax fractional programming problem:

B 6 -1
Jnf sup (f (z,9) + ; \/:UTBra:) (h (z,y) — ; \/wTqu> (P)

For § = 6 = 1, this problem was studied by Lai et al. [4], and further, if B = D; = 0, (P)
is a differentiable minmax fractional programming problem which has been studied by Liu and
Wu [5]. Many authors investigated the optimality conditions and duality theorems for minmax
(fractional) programming problems. For details, one can consult [4, 7]. Problems which contain
square root terms were first studied by Mond [6]. Some extensions of Mond’s results were obtained,
for example, by Chandra et al. [2], Zhang and Mond [12], Preda and Koller [8].

In an earlier work, under conditions of convexity, Schmittendorf [10] established necessary and
sufficient optimality conditions for the problem:

inf sup v (z,y), (P1)
zEP yey

where ¢ : R™ x R™ — R is a continuous differentiable mapping.



2 Notations and Preliminary Results

Throughout this paper, we denote by R™ the n-dimensional Euclidean space and by R”} its non-
negative orthant. Let us consider the set P defined by (1), and for each = € P, we define

J(@) = {je{l,2,---,p} |g;(x) =0},
fm+ SV Ba  f@a+ S Vo B
Y() = {yey T? = sup 7?1 ,
h(z,y)— Y \/a Dyx ey h(z,z) = Y, \/aTDyx
\ g=1 g=1

1<s<n+l, Yt=1,

— = s ms =1
K(z) = (s,t,7) e Nx R xR and § = (J1, - . 5s) € R

withg; € Y (z),i=1s

\

Since f and h are continuous differentiable functions and Y is a compact set in R™, it follows that
for each ¢ € P, we have Y (z¢) # 0, and for any y; € Y (z¢) , we denote

[

B
ko = (f (20, 75) + 3 \Jad Brxo) (h (20,5 = 3 W>

Let A be an m xn matrix and let M, M;,i=1,--- ,k, be n X n symmetric positive semidefinite
matrices.

—1

(2)

Lemma 1 [11] We have

k
Az >0 = ¢z + Z VT M;x >0,
i=1

if and only if there exist y € R and v; € R”, i = 1,k, such that

k
Av; 20, o] Mw; <1,i=TFk, A'y=c+» My
i=1

Lemma 2 [10] Let zo be a solution of the minmaz problem (P1) and the vectors Vg; (xo),
Jj € J(xo) are linearly independent. Then there exist a positive integer s, 1 < s < n+ 1, real
numbers t; > 0,1 =1,s, p; >0, j =1,p, and vectors §; € Y (x0), i = 1, s, such that

s P s
Ztivgﬂ/f (z0,7:) + ZMngj (o) =0, pjgj(z0) =0, j=1,p, Zti # 0.
i=1 j=1 i=1
Now we give the definitions of (7, p, #)-quasi-invexity and (1, p, 8)-pseudo-invexity as extensions
of the invexity notion.

Definition 3 A differentiable function ¢ : C C R™ — R is (1, p,0)-invex at xo € C if there exist
functionsn: C x C - R™, 0:C xC — Ry and p € R such that

¢ (z) — ¢ (z0) > 1 (z,20) " Vi (o) + p8 (2, 20) -

If —p is (n, p,0)-invex at xo € C, then ¢ is called (n, p,0)-incave at zo € C.
If the inequality holds strictly, then @ is called to be strictly (n, p,0)-invez.

Definition 4 A differentiable function ¢ : C C R™ — R is (n, p, 0)-pseudo-invez at xog € C' if there
exist functions n: C x C - R", 8 : C x C — Ry and p € R such that the following hold:

0 (z,20) " Vi (z9) > —p (z,20) = ¢ (z) > ¢ (x0), Yz eC,



Definition 5 A differentiable function ¢ : C C R™ — R is strictly (n, p,0)-pseudo-invez at xq € C
if there exist functionsn:C x C - R™ 6 :C x C — Ry and p € R such that the following hold:

(2, 20)" Vi (20) > —pb (z,29) = ¢ (z) > ¢ (20), Yz €C, x# .

Definition 6 A differentiable function ¢ : C CR™ — R is (1, p, 0)-quasi-invex at xo € C if there
exist functions n: C x C = R", 0 :C x C — Ry and p € R such that the following hold:

p (@) <p(w0) = n(x,20)" Vo (20) < —pb (2,20), Vi € C.

3 Necessary and Sufficient Optimality Conditions
For any x € P, let us denote the following index sets:

B(z) = {r€{12---,ﬂ}|xTB:r>O}
B(z) = {12,---,8}\B(z)={r|2'B,x=0},

D(z) = {qe{1,2,---,6} |xTD x>0},
D(z) = {1,2,---,6} \D(z) ={q|z"Dyz=0}.
Using Lemma 2, we may prove the following necessary optimality conditions for problem (P).
Theorem 7 (Necessary Condition) If x¢ is an optimal solution of problem (P) for which

B(zo) = 0, D(zo) = 0, and Vg; (w0), j € J(wo) are linearly independent, then there exist
(s,t,9) € K (x0), ko € Ry, w, € R",r =1,5, v, € R",q = 1,6, and ji € Ry such that

s
< (20, 9:) — ZDq”q>
g=1
B8 )
f (zo, 7 —l—Z\/x(—')—Brmo—kO( (zo, i) Z\/mS—qu()) =0, Vi=1,s, (4)
r=1 g=1

s

>t

i=1

Vf m07yz +ZB w, — ko

+ Zﬂjvfh (o) =0, (3)

P
> i (x0) =0, (5)
j=1

t_z > 0; ZEZ — ]-7 (6)
i=1

wIBrwr <1, x(—)rBrwr =V :L'(—)rBera r=14,

. 7
v, Dgvg <1, x§ Dgvg = \/xg Dgzo  q=1,0. @

We notice that, in the above theorem, all matrices B, and D, are supposed to be positive
definite. If at least one of B(xg) or D (zy) is not empty, then the functions involved in the
objective function of problem (P) are not differentiable. In this case, the necessary optimality
conditions still hold under some additional assumptions. For zq € P and (s,t,7) € K (zg) we
define the following vector:

Dquo

r€D(zo) 1/ ‘TOTquU

B,x _
Oé_zt vf x05y1)+ Z 70_]{0 vh($07y7,)_

reB(zg) V Z'JBMCO

Now we define a set Z as follows:



2TVg; (w0) <0, j € J (),

Zy(w) = 7R ( Y V2 Biz4+ ¥ ZT((kO)QDq)z><O

2Ta+ Yt
i=1 reB(zo) q€D(z0)

If one of the index sets involved in the above expressions is empty, then the correspondig sum
vanishes.
Using Lemma 1, we establish the following result:

Theorem 8 Let x¢ be an optimal solution of problem (P) and at least one of B (xg) or D (z¢)
is not empty. Let (s,t,§) € K (x) be such that Zy (zo) = 0. Then there exist vectors w, € R™,
r=1,0,v, € R", ¢=1,0, and i € R which satisfy the relations (3) - (7).

For convenience, if a point 2o € P has the property that the vectors Vg; (zo), j € J(20),
are linear independent and the set Zyz(z9) = 0, then we say that zo € P satisfy a constraint
qualification.

The results of Theorems 7 and 8 are the necessary conditions for the optimal solution of problem
(P). Actually, the conditions (3) - (7) are also the sufficient optimality conditions for (P), for which
we state the following result involving generalized invex functions, which are weaker assumptions
than Lai et al. use in [4].

Theorem 9 (Sufficient Conditions) Let 2o € P be a feasible solution of (P) and there exist a
positive integer s, 1 <s<n+1,7; €Y (x9),i=1,s, ko € Ry, defined by (2), t € R%, w, € R",
r=1,8,v,€R", ¢q=1,6,and i € RE such that the relations (8) - (7) are satisfied. If any one
of the following four condztwns holds:

(a) f(-,5:)+ ZB: (')TBrwr is (1, pi, 0)-invex, h(-,y;) — 25: (-)Tquq is (1, p},0)-incave for
=1

g=1

ﬂ gj () is (n’p(]ae)_invexJ and

?M*@

Z t; ( + piko) > 0,
— 5 - _ 5 T _ d T . .
(b) (I)(): thz f(ayz)+ Zl() B’r’w’r—ko h(vyz)_zl() quq (2] (77’079)‘”“)655
1= r= q=
P
and - fi;g; () is (0, po,8)-invez, and p+ po > 0,
j=1

— P
(c) ®(-) is (n,p,0)-pseudo-invex and ) ju;g; (-) is (1, po,)-quasi-invez, and p + po > 0,
Jj=1

_ P
(d) ®(-) is (n,p,0)-quasi-invex, Y. fi;g; (+) is strictly (n, po,0)-pseudo-invex, p + po > 0,
i=1

then g is an optimal solution of (P).

4 Duality

Let us consider the set H (s, t,y) consisting of all (z, y, k,v,w) € R® x RE. x R x R x R™, where
v=(v1,--+,v5), vy € R", ¢ =19, and w = (wq,--- ,wg), w, € R”, r =1, [, which satisfy the
following conditions:

Zt szy,+ZBwr—k<thyl Zqu>

= r=1

+> 1V, (2) =0, (8)

j=1




s B

4
doti|f(zy)+ Y 2 B, —k <h (z:9) = > zTquqﬂ >0, 9)

=1 r=1
p
> gi (2) >0, (10)
j=1

(s,t,y) € K (2) (11)
w) Byw, <1, r=1,0, v;quvq <1, ¢g=1,6. (12)
The optimality conditions, stated in the preceding section for the minmax problem (P), suggest

us to define the following dual problem:

max supi{k| (z,u,k,v,w) € H (s,t, DP
(s,t,y)EK(2) pik]( ) ( y)} (DP)

If, for a triplet (s,t,y) € K (z), the set H (s,t,y) = 0}, then we define the supremum over
H (s,t,y) to be —oco. Further, we denote

s B8 )
()= n f<-,yi>+2<->TBrwr—k(h(-,yi)—z(-fquq)]

=1

Now, we can state the following weak duality theorem for (P) and (DP).

Theorem 10 (Weak Duality) Let =« € P be a feasible solution of (P) and

(z,p, k,v,w,s,t,y) be a feasible solution of (DP). If any of the following four conditions
holds:

M=

B
(0,) f(ayl) + Z ()T B,w, is (U:Pi;a)'mve% h(ayl) - (')Tquq is (n:pg,e)'incave fOT
=1

1

q
P

i=1,s, Z H;g;5 () is (n:poaa)'invema and
j=1

8
po+ X ti (pi + pik) >0,
=1

P
(b) ®(-) is (n,p,0)-invex and Y p;g; () is (0, po,0)-invez, and p + po > 0,
i=1

P
(c) ®(-) is (n,p,0)-pseudo-invex and Y, pig; () is (1, po,8)-quasi-invez, and p + po > 0,
i=1

P
(d) ®(-) is (n,p,0)-quasi-invex, Y p;g; () is strictly (n, po,0)-pseuvdo-invex, p + pg > 0,
j=1

then

8 s -t
sug <f (z,y) + 7;1 Vi iL‘TBTSU> <h (z,y) — q; \/azTqu> >k (13)

ye

Theorem 11 (Strong Duality) Let z* be an optimal solution of problem (P). Assume that
x* satisfies a constraint qualification for (P). Then there exist (s*,t*,y*) € K (z*) and
(z*, p*, k*, v, w*) € H (s*,t*,y*) such that (x*, p*, k*, v*, w*, s* t*,y*) is a feasible solution of
(DP). If the hypotheses of Theorem 10 are also satisfied, then (x*,p*, k*,v*, w*, s*,t*,y*) is an
optimal solution for (DP), and both problems (P) and (DP) have the same optimal values.

Theorem 12 (Strict Converse Duality) Let z* and (Z,ﬂ,l;:,ﬁ,u’),g, t, g) be the optimal solu-

tions of (P) and (DP), respectively, and that the hypotheses of Theorem 11 are fulfilled. If any one
of the following three conditions holds:



B 5
(a) oneof f(-,9:;)+ > ()" Byw, is strictly (n, p;,0)-invez, h (-, 7;) — > ()7 D0, is strictly
r=1 q=1

P
(n, pi, 0)-incave for i =1,s, or > f;g; () is strictly (n, po,0)-invez, and
Jj=1

s _
po + thi (pi + pik) > 0;
i=

M=

=1 r=1

(b) either i:f,- lf(-,gj,-) + (')TBTU_)T —k (h(-,g,-) — Zj%(.)TDq@q)] is strictly (n,p,6)-

P
invex or Y fiig; (-) is strictly (n, po,8)-invez, and p+ py > 0;
=1

M=

(c) the function zs: t; lf(-,gj,-) +
i=1

= ™

()" Byw, — k <h(-,g,-) - i (-)TDq@qﬂ is strictly

1

P
(n, p,0)-pseudo-invez and Y fi;g; (+) is (1, po,0)-quasi-invez, and p + py > 0;
i=1

then x* = Z, that is, Z is an optimal solution for problem (P) and

B -1
sup <f<z,y>+zm) (h@,@—Zﬁ) ~%

yey g=1

5 Special Cases

If we consider special cases of the results presented in this paper, we may retrieve some previous
results obtained by other authors.

1. If we consider f = ¢ = 1, we obtain the results obtained by Lai et al. [4].
2. If B,=0,r=1,8,and D, =0, ¢ = 1,6, we obtain the results of Liu and Wu [5].

3. If the set Y is a singleton, B =1, h=1and D, =0, ¢ = 1,0, we obtain the results presented
respectively in Mond [6], Chandra et al. [2], Zhang and Mond [12], Preda and Koller [8].

4. For the case of the generalized fractional programming [1, 3], the set Y can be taken as the

m N
simplexY:{yE]Rm yiZO,Zyi:1},BT:0,r:1,ﬂ,anqu:0,q:1,5,and
=1

k3

f(z, m m —1

In this case the dual (DP) reduces to the dual problem of [1].
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